ترغب بنشر مسار تعليمي؟ اضغط هنا

Our empirical modeling suggests that deformation of placental vascular growth is associated with abnormal placental chorionic surface shape. Altered chorionic surface shape is associated with lowered placental functional efficiency. We hypothesize th at placentas with deformed chorionic surface vascular trees and reduced functional efficiency also have irregular vascular arborization that will be reflected in increased variability of placental thickness and a lower mean thickness. We find that non-centrality of the umbilical cord insertion is strongly and significantly correlated with disk thickness (Spearmans rho=0.128, p=0.002). Deformed shape is strongly and significantly associated with lower overall thickness and higher variability of thickness with beta between -0.173 and -0.254 (p<0.001) . Both lower mean thickness and high variability of thickness are strongly correlated with higher beta (reduced placental efficiency) (p<0.001 and p=0.038 respectively). Greater thickness variability is correlated with higher beta independent of the other placental shape variables p=0.004.
We tested the hypothesis that the fetal-placental relationship scales allometrically and identified modifying factors. Among women delivering after 34 weeks but prior to 43 weeks gestation, 24,601 participants in the Collaborative Perinatal Project (CPP) had complete data for placental gross proportion measures, specifically, disk shape, larger and smaller disk diameters and thickness, and umbilical cord length. The allometric metabolic equation was solved for alpha and beta by rewriting PW= alpha(BW)^beta as Log (PW) = Log(alpha) + beta*Log(BW). Mean beta was 0.78+ 0.02 (range 0.66, 0.89), 104% of that predicted by a supply-limited fractal system (0.75). Gestational age, maternal age, maternal BMI, parity, smoking, socioeconomic status, infant sex, and changes in placental proportions each had independent and significant effects on alpha. Conclusions: In the CPP cohort, the placental - birth weight relationship scales to approximately 3/4 power.
The chorionic plate (or fetal surface) of the human placenta is drawn as round, with the umbilical cord inserted roughly at the center, but variability of this shape is common. The average shape of the chorionic plate has never been established. The goal of this work is to measure the average shape in a birth cohort.
While it is well-understood what a normal human placenta should look like, a deviation from the norm can take many possible shapes. In this paper we propose a mechanism for this variability based on the change in the structure of the vascular tree.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا