ترغب بنشر مسار تعليمي؟ اضغط هنا

Grothendieck and Harder proved that every principal bundle over the projective line with split reductive structure group (and trivial over the generic point) can be reduced to a maximal torus. Furthermore, this reduction is unique modulo automorphism s and the Weyl group. In a series of six variations on this theme, we prove corresponding results for principal bundles over the following schemes and stacks: (1) a line modulo the group of nth roots of unity; (2) a football, that is, an orbifold of genus zero with two marked points; (3) a gerbe over a football whose structure group is the nth roots of unity; (4) a chain of lines meeting in nodes; (5) a line modulo an action of a split torus; and (6) a chain modulo an action of a split torus. We also prove that the automorphism groups of such bundles are smooth, affine, and connected.
Let G be a split reductive group. We introduce the moduli problem of bundle chains parametrizing framed principal G-bundles on chains of lines. Any fan supported in a Weyl chamber determines a stability condition on bundle chains. Its moduli stack pr ovides an equivariant toroidal compactification of G. All toric orbifolds may be thus obtained. Moreover, we get a canonical compactification of any semisimple G, which agrees with the wonderful compactification in the adjoint case, but which in other cases is an orbifold. Finally, we describe the connections with Losev-Manins spaces of weighted pointed curves and with Kauszs compactification of GL(n).
It is a long-standing question whether an arbitrary variety is desingularized by finitely many normalized Nash blow-ups. We consider this question in the case of a toric variety. We interpret the normalized Nash blow-up in polyhedral terms, show how continued fractions can be used to give an affirmative answer for a toric surface, and report on a computer investigation in which over a thousand 3- and 4-dimensional toric varieties were successfully resolved.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا