ترغب بنشر مسار تعليمي؟ اضغط هنا

There has been a long-standing and at times fractious debate whether complex and large systems can be stable. In ecology, the so-called `diversity-stability debate arose because mathematical analyses of ecosystem stability were either specific to a p articular model (leading to results that were not general), or chosen for mathematical convenience, yielding results unlikely to be meaningful for any interesting realistic system. Mays work, and its subsequent elaborations, relied upon results from random matrix theory, particularly the circular law and its extensions, which only apply when the strengths of interactions between entities in the system are assumed to be independent and identically distributed (i.i.d.). Other studies have optimistically generalised from the analysis of very specific systems, in a way that does not hold up to closer scrutiny. We show here that this debate can be put to rest, once these two contrasting views have been reconciled --- which is possible in the statistical framework developed here. Here we use a range of illustrative examples of dynamical systems to demonstrate that (i) stability probability cannot be summarily deduced from any single property of the system (e.g. its diversity), and (ii) our assessment of stability depends on adequately capturing the details of the systems analysed. Failing to condition on the structure of dynamical systems will skew our analysis and can, even for very small systems, result in an unnecessarily pessimistic diagnosis of their stability.
Chaos and oscillations continue to capture the interest of both the scientific and public domains. Yet despite the importance of these qualitative features, most attempts at constructing mathematical models of such phenomena have taken an indirect, q uantitative approach, e.g. by fitting models to a finite number of data-points. Here we develop a qualitative inference framework that allows us to both reverse engineer and design systems exhibiting these and other dynamical behaviours by directly specifying the desired characteristics of the underlying dynamical attractor. This change in perspective from quantitative to qualitative dynamics, provides fundamental and new insights into the properties of dynamical systems.
Here we introduce a new design framework for synthetic biology that exploits the advantages of Bayesian model selection. We will argue that the difference between inference and design is that in the former we try to reconstruct the system that has gi ven rise to the data that we observe, while in the latter, we seek to construct the system that produces the data that we would like to observe, i.e. the desired behavior. Our approach allows us to exploit methods from Bayesian statistics, including efficient exploration of models spaces and high-dimensional parameter spaces, and the ability to rank models with respect to their ability to generate certain types of data. Bayesian model selection furthermore automatically strikes a balance between complexity and (predictive or explanatory) performance of mathematical models. In order to deal with the complexities of molecular systems we employ an approximate Bayesian computation scheme which only requires us to simulate from different competing models in order to arrive at rational criteria for choosing between them. We illustrate the advantages resulting from combining the design and modeling (or in-silico prototyping) stages currently seen as separate in synthetic biology by reference to deterministic and stochastic model systems exhibiting adaptive and switch-like behavior, as well as bacterial two-component signaling systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا