ترغب بنشر مسار تعليمي؟ اضغط هنا

28 - Meng Wang , Ming Yi , Huibo Cao 2015
A combination of neutron diffraction and angle-resolved photoemission spectroscopy measurements on a pure antiferromagnetic stripe Rb$_{1-delta}$Fe$_{1.5-sigma}$S$_2$ is reported. A neutron diffraction experiment on a powder sample shows that a 98$%$ volume fraction of the sample is in the antiferromagnetic stripe phase with rhombic iron vacancy order and a refined composition of Rb$_{0.66}$Fe$_{1.36}$S$_{2}$, and that only 2$%$ of the sample is in the block antiferromagnetic phase with $sqrt{5}times sqrt{5}$ iron vacancy order. Furthermore, a neutron diffraction experiment on a single crystal shows that there is only a single phase with the stripe antiferromagnetic order with the refined composition of Rb$_{0.78}$Fe$_{1.35}$S$_2$, while the phase with block antiferromagnetic order is absent. Angle-resolved photoemission spectroscopy measurements on the same crystal with the pure stripe phase reveal that the electronic structure is gapped at the Fermi level with a gap larger than 0.325 eV. The data collectively demonstrates that the extra 10$%$ iron vacancies in addition to the rhombic iron vacancy order effectively impede the formation of the block antiferromagnetic phase; the data also suggest that the stripe antiferromagnetic phase with rhombic iron vacancy order is a Mott insulator.
24 - Meng Wang , P. Valdivia , Ming Yi 2015
An inelastic neutron scattering study of the spin waves corresponding to the stripe antiferromagnetic order in insulating Rb$_{0.8}$Fe$_{1.5}$S$_2$ throughout the Brillouin zone is reported. The spin wave spectra are well described by a Heisenberg Ha miltonian with anisotropic in-plane exchange interactions. Integrating the ordered moment and the spin fluctuations results in a total moment squared of $27.6pm4.2mu_B^2$/Fe, consistent with $mathrm{S approx 2}$. Unlike $X$Fe$_2$As$_2$ ($X=$ Ca, Sr, and Ba), where the itinerant electrons have a significant contribution, our data suggest that this stripe antiferromagnetically ordered phase in Rb$_{0.8}$Fe$_{1.5}$S$_2$ is a Mott-like insulator with fully localized $3d$ electrons and a high-spin ground state configuration. Nevertheless, the anisotropic exchange couplings appear to be universal in the stripe phase of Fe pnictides and chalcogenides.
51 - Meng Wang , Miaoyin Wang , G.N.Li 2011
Neutron diffraction has been used to study the lattice and magnetic structures of the insulating and superconducting Rb$_y$Fe$_{1.6+x}$Se$_2$. For the insulating Rb$_{y}$Fe$_{1.6+x}$Se$_2$, neutron polarization analysis and single crystal neutron dif fraction unambiguously confirm the earlier proposed $sqrt{5}timessqrt{5}$ block antiferromagnetic structure. For superconducting samples ($T_c=30$ K), we find that in addition to the tetragonal $sqrt{5}timessqrt{5}$ superlattice structure transition at 513 K, the material develops a separate $sqrt{2}times sqrt{2}$ superlattice structure at a lower temperature of 480 K. These results suggest that superconducting Rb$_{y}$Fe$_{1.6+x}$Se$_2$ is phase separated with coexisting $sqrt{2}times sqrt{2}$ and $sqrt{5}timessqrt{5}$ superlattice structures.
We use neutron scattering to determine spin excitations in single crystals of nonsuperconducting Li1-xFeAs throughout the Brillouin zone. Although angle resolved photoemission experiments and local density approximation calculations suggest poor Ferm i surface nesting conditions for antiferromagnetic(AF) order, spin excitations in Li1-xFeAs occur at the AF wave vectors Q = (1, 0) at low energies, but move to wave vectors Q = (pm 0.5, pm0.5) near the zone boundary with a total magnetic bandwidth comparable to that of BaFe2As2. These results reveal that AF spin excitations still dominate the low-energy physics of these materials and suggest both itinerancy and strong electron-electron correlations are essential to understand the measured magnetic excitations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا