ترغب بنشر مسار تعليمي؟ اضغط هنا

Mott localization in a pure stripe antiferromagnet Rb$_{1-delta}$Fe$_{1.5-sigma}$S$_2$

50   0   0.0 ( 0 )
 نشر من قبل Meng Wang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A combination of neutron diffraction and angle-resolved photoemission spectroscopy measurements on a pure antiferromagnetic stripe Rb$_{1-delta}$Fe$_{1.5-sigma}$S$_2$ is reported. A neutron diffraction experiment on a powder sample shows that a 98$%$ volume fraction of the sample is in the antiferromagnetic stripe phase with rhombic iron vacancy order and a refined composition of Rb$_{0.66}$Fe$_{1.36}$S$_{2}$, and that only 2$%$ of the sample is in the block antiferromagnetic phase with $sqrt{5}times sqrt{5}$ iron vacancy order. Furthermore, a neutron diffraction experiment on a single crystal shows that there is only a single phase with the stripe antiferromagnetic order with the refined composition of Rb$_{0.78}$Fe$_{1.35}$S$_2$, while the phase with block antiferromagnetic order is absent. Angle-resolved photoemission spectroscopy measurements on the same crystal with the pure stripe phase reveal that the electronic structure is gapped at the Fermi level with a gap larger than 0.325 eV. The data collectively demonstrates that the extra 10$%$ iron vacancies in addition to the rhombic iron vacancy order effectively impede the formation of the block antiferromagnetic phase; the data also suggest that the stripe antiferromagnetic phase with rhombic iron vacancy order is a Mott insulator.

قيم البحث

اقرأ أيضاً

40 - Meng Wang , P. Valdivia , Ming Yi 2015
An inelastic neutron scattering study of the spin waves corresponding to the stripe antiferromagnetic order in insulating Rb$_{0.8}$Fe$_{1.5}$S$_2$ throughout the Brillouin zone is reported. The spin wave spectra are well described by a Heisenberg Ha miltonian with anisotropic in-plane exchange interactions. Integrating the ordered moment and the spin fluctuations results in a total moment squared of $27.6pm4.2mu_B^2$/Fe, consistent with $mathrm{S approx 2}$. Unlike $X$Fe$_2$As$_2$ ($X=$ Ca, Sr, and Ba), where the itinerant electrons have a significant contribution, our data suggest that this stripe antiferromagnetically ordered phase in Rb$_{0.8}$Fe$_{1.5}$S$_2$ is a Mott-like insulator with fully localized $3d$ electrons and a high-spin ground state configuration. Nevertheless, the anisotropic exchange couplings appear to be universal in the stripe phase of Fe pnictides and chalcogenides.
We report the synthesis, crystal structure, physical properties, and first-principles calculations of a vanadium-based oxytelluride Rb$_{1-delta}$V$_2$Te$_2$O ($deltaapprox0.2$). The crystal structure bears two-dimensional V$_2$O square nets sandwich ed with tellurium layers, mimicking the structural motifs of cuprate and iron-based superconductors. The material exhibits metallic conductivity with dominant hole-type charge carriers. A weak metal-to-metal transition takes place at $sim$100 K, which is conformably characterized by a slight kink/hump in the electrical resistivity, jumps in the Hall and Seebeck coefficients, a minute drop in the magnetic susceptibility, and a small peak in the heat capacity. Neither Bragg-peak splitting nor superlattice reflections can be detected within the resolution of conventional x-ray diffractions. The band-structure calculations show that V-3$d$ orbitals dominate the electronic states at around Fermi energy where a $d_{yz}/d_{xz}$ orbital polarization shows up. There are three Fermi-surface sheets that seem unfavorable for nesting. Our results suggest an orbital or spin-density-wave order for the low-temperature state and, upon suppression of the competing order, emergence of superconductivity could be expected.
The magnetic properties of iron-based superconductors $A$Fe$_2$As$_2$ ($A=$K, Cs, and Rb), which are characterized by the V-shaped dependence of the critical temperature ($T_{rm c}$) on pressure ($P$) were studied by means of the muon spin rotation/r elaxation technique. In all three systems studied the magnetism was found to appear for pressures slightly below the critical one ($P_{rm c}$), i.e. at pressure where $T_{rm c}(P)$ changes the slope. Rather than competing, magnetism and superconductivity in $A$Fe$_2$As$_2$ are coexisting at $Pgtrsim P_{rm c}$ pressure region. Our results support the scenario of a transition from one pairing state to another, with different symmetries on either side of $P_{rm c}$.
153 - Ming Yi , Donghui Lu , Rong Yu 2012
In this work, we study the A$_{x}$Fe$_{2-y}$Se$_2$ (A=K, Rb) superconductors using angle-resolved photoemission spectroscopy. In the low temperature state, we observe an orbital-dependent renormalization for the bands near the Fermi level in which th e dxy bands are heavily renormliazed compared to the dxz/dyz bands. Upon increasing temperature to above 150K, the system evolves into a state in which the dxy bands have diminished spectral weight while the dxz/dyz bands remain metallic. Combined with theoretical calculations, our observations can be consistently understood as a temperature induced crossover from a metallic state at low temperature to an orbital-selective Mott phase (OSMP) at high temperatures. Furthermore, the fact that the superconducting state of A$_{x}$Fe$_{2-y}$Se$_2$ is near the boundary of such an OSMP constraints the system to have sufficiently strong on-site Coulomb interactions and Hunds coupling, and hence highlight the non-trivial role of electron correlation in this family of iron superconductors.
We show that electronic Raman scattering affords a window into the essential properties of the pairing potential $V_{mathbf{k},mathbf{k^{prime}}}$ of iron-based superconductors. In Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ we observe band dependent energy gaps along with excitonic Bardasis-Schrieffer modes characterizing, respectively, the dominant and subdominant pairing channel. The $d_{x^2-y^2}$ symmetry of all excitons allows us to identify the subdominant channel to originate from the interaction between the electron bands. Consequently, the dominant channel driving superconductivity results from the interaction between the electron and hole bands and has the full lattice symmetry. The results in Rb$_{0.8}$Fe$_{1.6}$Se$_2$ along with earlier ones in Ba(Fe$_{0.939}$Co$_{0.061}$)$_2$As$_2$ highlight the influence of the Fermi surface topology on the pairing interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا