ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable quantum technologies require faithful conversion between matter qubits storing the quantum information and photonic qubits carrying the information in integrated circuits and waveguides. We demonstrate that the electromagnetic field chiralit y which arises in nanophotonic waveguides leads to unidirectional emission from an embedded quantum dot quantum emitter, with resultant in-plane transfer of matter-qubit (spin) information. The chiral behavior occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We measure and compare the phenomena in single mode nanobeam and photonic crystal waveguides. The former is much more tolerant to dot position, exhibits experimental spin-path readout as high as 95 +/- 5% and has potential to serve as the basis of future spin-logic and network implementations.
Advances in nanotechnology provide techniques for the realisation of integrated quantum-optical circuits for on-chip quantum information processing(QIP). The indistinguishable single photons, required for such devices can be generated by parametric d own-conversion, or from quantum emitters such as colour centres and quantum dots(QDs). Among these, semiconductor QDs offer distinctive capabilities including on-demand operation, coherent control, frequency tuning and compatibility with semiconductor nanotechnology. Moreover, the coherence of QD photons can be significantly enhanced in resonance fluorescence(RF) approaching at its best the coherence of the excitation laser. However, the implementation of QD RF in scalable on-chip geometries remains challenging due to the need to suppress stray laser photons. Here we report on-chip QD RF coupled into a single-mode waveguide with negligible resonant laser background and show that the coherence is enhanced compared to off-resonant excitation. The results pave the way to a novel class of integrated quantum-optical devices for on-chip QIP with embedded resonantly-driven quantum emitters.
Highly polarized nuclear spins within a semiconductor quantum dot (QD) induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of QD-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond time-scale of Overhauser fields of the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using full coherent control of an ensemble of 10^3-10^4 optically polarized nuclear spins by sequences of short radio-frequency (rf) pulses. These results open the way to a new class of experiments using rf techniques to achieve highly-correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-micro K nuclear spin temperatures, rapid adiabatic passage, and spin squeezing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا