ترغب بنشر مسار تعليمي؟ اضغط هنا

Proplyds and stars inside HII-regions are a well studied phenomenon. It is possible that they were triggered by the expansion of the HII-region itself. Here, we present calculations on the dynamics of HII-regions. We show that the triggered stars tha t form in the expanding shell of swept up material around the HII region rarely return into the HII regions on timescales that are inferred for the proplyds and observed young stars. However, in very dense environments like Orion, the triggered stars return in time. Thus, our model can explain why proplyds are barely observed in other HII regions. We propose that the properties of young stellar objects in HII regions in general depend critically on the distance from the massive, ionizing central star cluster. Closest in, there are proplyds, where the disk of a young star interacts directly with the feedback of the massive star. Further out are Class II protostars, where the ionization already removed the envelope. Even further away, one should find Class I stars, which either have been triggered by the ionizing radiation or pre-existed and have not lost their envelope yet. This radial sequence is not necessarily an age sequence but rather a result of the dwindling importance of stellar winds and ionizing radiation with distance. We investigate the observational signature of triggered star formation and find that the stellar distribution for ionization triggered star formation shows a distinct feature, a peak at the current position of the ionization front. Therefore, it is generally possible to tell triggered and in situ distributions of stars apart.
In the widely adopted LambdaCDM scenario for galaxy formation, dwarf galaxies are the building blocks of larger galaxies. Since they formed at relatively early epochs when the background density was relatively high, they are expected to retain their integrity as satellite galaxies when they merge to form larger entities. Although many dwarf spheroidal galaxies (dSphs) are found in the galactic halo around the Milky Way, their phase space density (or velocity dispersion) appears to be significantly smaller than that expected for satellite dwarf galaxies in the LambdaCDM scenario. In order to account for this discrepancy, we consider the possibility that they may have lost a significant fraction of their baryonic matter content during the first infall at the Hubble expansion turnaround. Such mass loss arises naturally due to the feedback by relatively massive stars which formed in their centers briefly before the maximum contraction. Through a series of N-body simulations, we show that the timely loss of a significant fraction of the dSphs initial baryonic matter content can have profound effects on their asymptotic half-mass radius, velocity dispersion, phase-space density, and the mass fraction between residual baryonic and dark matter.
We propose that the Pipe Nebula is an HII region shell swept up by the B2 IV beta Cephei star theta Ophiuchi. After reviewing the morphological evidence by recent observations, we perform a series of analytical calculations. We use realistic HII regi on parameters derived with the radiative transfer code Cloudy from observed stellar parameters. We are able to show that the current size, mass and pressure of the region can be explained in this scenario. We investigate the configuration today and come to the conclusion that the Pipe Nebula can be best described by a three phase medium in pressure equilibrium. The pressure support is provided by the ionized gas and mediated by an atomic component to confine the cores at the observed current pressure. In the future, star formation in these cores is likely to be either triggered by feedback of the most massive, gravitationally bound cores as soon as they collapse or by the supernova explosion of theta Ophiuchi itself.
We investigate the enrichment of the pre-solar cloud core with short lived radionuclides (SLRs), especially 26Al. The homogeneity and the surprisingly small spread in the ratio 26Al/27Al observed in the overwhelming majority of calcium-aluminium-rich inclusions (CAIs) in a vast variety of primitive chondritic meteorites places strong constraints on the formation of the the solar system. Freshly synthesized radioactive 26Al has to be included and well mixed within 20kyr. After discussing various scenarios including X-winds, AGB stars and Wolf-Rayet stars, we come to the conclusion that triggering the collapse of a cold cloud core by a nearby supernova is the most promising scenario. We then narrow down the vast parameter space by considering the pre-explosion survivability of such a clump as well as the cross-section necessary for sufficient enrichment. We employ numerical simulations to address the mixing of the radioactively enriched SN gas with the pre-existing gas and the forced collapse within 20kyr. We show that a cold clump of 10Msun at a distance of 5pc can be sufficiently enriched in 26Al and triggered into collapse fast enough - within 18kyr after encountering the supernova shock - for a range of different metallicities and progenitor masses, even if the enriched material is assumed to be distributed homogeneously in the entire supernova bubble. In summary, we envision an environment for the birth place of the Solar System 4.567Gyr ago similar to the situation of the pillars in M16 nowadays, where molecular cloud cores adjacent to an HII region will be hit by a supernova explosion in the future. We show that the triggered collapse and formation of the Solar System as well as the required enrichment with radioactive 26Al are possible in this scenario.
We present a three-dimensional, fully parallelized, efficient implementation of ionizing UV radiation for smoothed particle hydrodynamics (SPH) including self-gravity. Our method is based on the SPH/tree code VINE. We therefore call it iVINE (for Ion ization + VINE). This approach allows detailed high-resolution studies of the effects of ionizing radiation from e.g. young massive stars on their turbulent parental molecular clouds. In this paper we describe the concept and the numerical implementation of the radiative transfer for a plain-parallel geometry and we discuss several test cases demonstrating the efficiency and accuracy of the new method. As a first application, we study the radiatively driven implosion of marginally stable molecular clouds at various distances of a strong UV source and show that they are driven into gravitational collapse. The resulting cores are very compact and dense exactly as it is observed in clustered environments. Our simulations indicate that the time of triggered collapse depends on the distance of the core from the UV source. Clouds closer to the source collapse several $10^5$ years earlier than more distant clouds. This effect can explain the observed age spread in OB associations where stars closer to the source are found to be younger. We discuss possible uncertainties in the observational derivation of shock front velocities due to early stripping of proto-stellar envelopes by ionizing radiation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا