ترغب بنشر مسار تعليمي؟ اضغط هنا

iVINE - Ionization in the parallel tree/SPH code VINE: First results on the observed age-spread around O-stars

54   0   0.0 ( 0 )
 نشر من قبل Matthias Gritschneder
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a three-dimensional, fully parallelized, efficient implementation of ionizing UV radiation for smoothed particle hydrodynamics (SPH) including self-gravity. Our method is based on the SPH/tree code VINE. We therefore call it iVINE (for Ionization + VINE). This approach allows detailed high-resolution studies of the effects of ionizing radiation from e.g. young massive stars on their turbulent parental molecular clouds. In this paper we describe the concept and the numerical implementation of the radiative transfer for a plain-parallel geometry and we discuss several test cases demonstrating the efficiency and accuracy of the new method. As a first application, we study the radiatively driven implosion of marginally stable molecular clouds at various distances of a strong UV source and show that they are driven into gravitational collapse. The resulting cores are very compact and dense exactly as it is observed in clustered environments. Our simulations indicate that the time of triggered collapse depends on the distance of the core from the UV source. Clouds closer to the source collapse several $10^5$ years earlier than more distant clouds. This effect can explain the observed age spread in OB associations where stars closer to the source are found to be younger. We discuss possible uncertainties in the observational derivation of shock front velocities due to early stripping of proto-stellar envelopes by ionizing radiation.

قيم البحث

اقرأ أيضاً

114 - Emiliano Merlin 2009
We present EvoL, the new release of the Padova N-body code for cosmological simulations of galaxy formation and evolution. In this paper, the basic Tree + SPH code is presented and analysed, together with an overview on the software architectures. Ev oL is a flexible parallel Fortran95 code, specifically designed for simulations of cosmological structure formation on cluster, galactic and sub-galactic scales. EvoL is a fully Lagrangian self-adaptive code, based on the classical Oct-tree and on the Smoothed Particle Hydrodynamics algorithm. It includes special features such as adaptive softening lengths with correcting extra-terms, and modern formulations of SPH and artificial viscosity. It is designed to be run in parallel on multiple CPUs to optimize the performance and save computational time. We describe the code in detail, and present the results of a number of standard hydrodynamical tests.
Since the Universe is inhomogeneous on scales well below the Hubble radius, light bundles from distant galaxies are deflected and distorted by the tidal gravitational field of the large-scale matter distribution as they propagate through the Universe . Two-point statistical measures of the observed ellipticities, like the dispersion within a finite aperture or the ellipticity cross-correlation, can be related to the power spectrum of the large-scale structure. The measurement of cosmic shear (especially on small angular scales) can thus be used to constrain cosmological parameters and to test cosmological structure formation in the non-linear regime, without any assumptions about the relation between luminous and dark matter. In this paper we will present preliminary cosmic shear measurements on sub-arcminute scales, obtained from archival STIS parallel data. The high angular resolution of HST, together with the sensitivity and PSF-stability of STIS, allows us to measure cosmic shear along many independent lines-of-sight. Ongoing STIS parallel observations, currently being carried out in the frame of a big GO program (8562+9248), will greatly increase the number of available useful fields and will enable us to measure cosmic shear with higher accuracy on sub-arcminute scales.
The installation of the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) allows for the first time two-dimensional optical and ultraviolet slitless spectroscopy of faint objects from space. The STIS Parallel Survey (SPS ) routinely obtains broad band images and slitless spectra of random fields in parallel with HST observations using other instruments. The SPS is designed to study a wide variety of astrophysical phenomena, including the rate of star formation in galaxies at intermediate to high redshift through the detection of emission-line galaxies. We present the first results of the SPS, which demonstrate the capability of STIS slitless spectroscopy to detect and identify high-redshift galaxies.
Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar systems counterparts are the asteroid and Edgeworth-Kuiper belts. The DUNES survey aims at detecting extra-solar analo gues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. We used {it Herschel}/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 $mu$m were obtained, complemented in some cases with observations at 70 $mu$m, and at 250, 350 and 500 $mu$m using SPIRE. The observing strategy was to integrate as deep as possible at 100 $mu$m to detect the stellar photosphere. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of $sim$ 12.1% $pm$ 5% before emph{Herschel} to $sim$ 20.2% $pm$ 2%. A significant fraction ($sim$ 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160$mu$m range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.
The chemical composition of Earths atmosphere has undergone substantial evolution over the course of its history. It is possible, even likely, that terrestrial planets in other planetary systems have undergone similar changes; consequently, the age d istribution of nearby stars is an important consideration in designing surveys for Earth-analogues. Valenti & Fischer (2005) provide age and metallicity estimates for 1039 FGK dwarfs in the Solar Neighbourhood. Using the Hipparcos catalogue as a reference to calibrate potential biases, we have extracted volume-limited samples of nearby stars from the Valenti-Fischer dataset. Unlike other recent investigations, our analysis shows clear evidence for an age-metallicity relation in the local disk, albeit with substantial dispersion at any epoch. The mean metallicity increases from -0.3 dex at a lookback time of ~10 Gyrs to +0.15 dex at the present day. Supplementing the Valenti-Fischer measurements with literature data to give a complete volume-limited sample, the age distribution of nearby FGK dwarfs is broadly consistent with a uniform star-formation rate over the history of the Galactic disk. In striking contrast, most stars known to have planetary companions are younger than 5 Gyrs; however, stars with planetary companions within 0.4 AU have a significantly flatter age distribution, indicating that those systems are stable on timescales of many Gyrs. Several of the older, lower metallicity host stars have enhanced [alpha/Fe] ratios, implying membership of the thick disk. If the frequency of terrestrial planets is also correlated with stellar metallicity, then the median age of such planetary system is likely to be ~3 Gyrs. We discuss the implications of this hypothesis in designing searches for Earth analogues among the nearby stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا