ترغب بنشر مسار تعليمي؟ اضغط هنا

In a 2D conservative Hamiltonian system there is a formal integral $Phi$ besides the energy H. This is not convergent near a stable periodic orbit, but it is convergent near an unstable periodic orbit. We explain this difference and we find the conve rgence radius along the asymptotic curves. In simple mappings this radius is infinite. This allows the theoretical calculation of the asymptotic curves and their intersections at homoclinic points. However in more complex mappings and in Hamiltonian systems the radius of convergence is in general finite and does not allow the theoretical calculation of any homoclinic point. Then we develop a method similar to analytic continuation, applicable in systems expressed in action-angle variables, that allows the calculation of the asymptotic curves to an arbitrary length. In this way we can study analytically the chaotic regions near the unstable periodic orbit and near its homoclinic points.
It is known that the asymptotic invariant manifolds around an unstable periodic orbit in conservative systems can be represented by convergent series (Cherry 1926, Moser 1956, 1958, Giorgilli 2001). The unstable and stable manifolds intersect at an i nfinity of homoclinic points, generating a complicated homoclinic tangle. In the case of simple mappings it was found (Da Silva Ritter et al. 1987) that the domain of convergence of the formal series extends to infinity along the invariant manifolds. This allows in practice to study the homoclinic tangle using only series. However in the case of Hamiltonian systems, or mappings with a finite analyticity domain,the convergence of the series along the asymptotic manifolds is also finite. Here, we provide numerical indications that the convergence does not reach any homoclinic points. We discuss in detail the convergence problem in various cases and we find the degree of approximation of the analytical invariant manifolds to the real (numerical) manifolds as i) the order of truncation of the series increases, and ii) we use higher numerical precision in computing the coefficients of the series. Then we introduce a new method of series composition, by using action-angle variables, that allows the calculation of the asymptotic manifolds up to an a arbitrarily large extent. This is the first case of an analytic development that allows the computation of the invariant manifolds and their intersections in a Hamiltonian system for an extent long enough to allow the study of homoclinic chaos by analytical means.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا