ترغب بنشر مسار تعليمي؟ اضغط هنا

Interference represents one of the most striking manifestation of quantum physics in low-dimensional systems. Despite evidences of quantum interference in charge transport have been known for a long time, only recently signatures of interference indu ced thermal properties have been reported, paving the way for the phase-coherent manipulation of heat in mesoscopic devices. In this work we show that anomalous thermoelectric properties and efficient heat rectification can be achieved by exploiting the phase-coherent edge states of quantum Hall systems. By considering a tunneling geometry with multiple quantum point contacts, we demonstrate that the interference paths effectively break the electron-hole symmetry, allowing for a thermoelectric charge current flowing either from hot to cold or viceversa, depending on the details of the tunnel junction. Correspondingly, an interference induced heat current is predicted, and we are able to explain these results in terms of an intuitive physical picture. Moreover, we show that heat rectification can be achieved by coupling two quantum Hall systems with different filling factors, and that this effect can be enhanced by exploiting the interference properties of the tunnel junction.
We establish the path integral approach for the time-dependent heat exchange of an externally driven quantum system coupled to a thermal reservoir. We derive the relevant influence functional and present an exact formal expression for the moment gene rating functional which carries all statistical properties of the heat exchange process for general linear dissipation. The general method is applied to the time-dependent average heat transfer in the dissipative two-state system. We show that the heat can be written as a convolution integral which involves the population and coherence correlation functions of the two-state system and additional correlations due to a polarization of the reservoir. The corresponding expression can be solved in the weak-damping limit both for white noise and for quantum mechanical coloured noise. The implications of pure quantum effects are discussed. Altogether a complete description of the dynamics of the average heat transfer ranging from the classical regime down to zero temperature is achieved.
We study the finite frequency (F.F.) noise properties of edge states in the Laughlin state. We investigate the model of a resonant detector coupled to a quantum point contact in the weak-backscattering limit. In particular we discuss the impact of po ssible renormalization of the Luttinger exponent, due to environmental effects, on the measured quantities and we propose a simple way to extract such non-universal parameters from noise measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا