ﻻ يوجد ملخص باللغة العربية
Interference represents one of the most striking manifestation of quantum physics in low-dimensional systems. Despite evidences of quantum interference in charge transport have been known for a long time, only recently signatures of interference induced thermal properties have been reported, paving the way for the phase-coherent manipulation of heat in mesoscopic devices. In this work we show that anomalous thermoelectric properties and efficient heat rectification can be achieved by exploiting the phase-coherent edge states of quantum Hall systems. By considering a tunneling geometry with multiple quantum point contacts, we demonstrate that the interference paths effectively break the electron-hole symmetry, allowing for a thermoelectric charge current flowing either from hot to cold or viceversa, depending on the details of the tunnel junction. Correspondingly, an interference induced heat current is predicted, and we are able to explain these results in terms of an intuitive physical picture. Moreover, we show that heat rectification can be achieved by coupling two quantum Hall systems with different filling factors, and that this effect can be enhanced by exploiting the interference properties of the tunnel junction.
We predict and analyze {it radiation-induced quantum interference effect} in low-dimensional $n$-$p$ junctions. This phenomenon manifests itself by large oscillations of the photocurrent as a function of the gate voltage or the frequency of the radia
In recent interference experiments with an electronic Fabry-Perot interferometer (FPI), implemented in the integer quantum Hall effect regime, a flux periodicity of $h/2e$ was observed at bulk fillings $ u_B>2.5$. The halved periodicity was accompani
Recently, a thermodynamic uncertainty relation (TUR) has been formulated for classical Markovian systems demonstrating trade-off between precision (current fluctuation) and cost (dissipation). Systems that violate the TUR are interesting as they over
Heat rectifiers are systems that conduct heat asymmetrically for forward and reversed temperature gradients. Here, we present an analytical study of heat rectification in linear quantum systems. We demonstrate that asymmetric heat currents can be ind
Nonlinear electrical properties of graphene-based three-terminal nanojunctions are presented. Intrinsic rectification of voltage is observed up to room temperature. The sign and the efficiency of the rectification can be tuned by a gate. Changing the