ترغب بنشر مسار تعليمي؟ اضغط هنا

Rock is wrapped by paper, paper is cut by scissors, and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predat or-prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms, and the competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more regardless of the particularities of the game. Here we review recent advances on the rock-paper-scissors and related evolutionary games, focusing in particular on pattern formation, the impact of mobility, and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional rock-paper-scissors models and the application of the complex Ginzburg-Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related for example to dynamical effects of coevolutionary rules and invasion reversals due to multi-point interactions, are outlined as well.
We discuss models and data of crowd disasters, crime, terrorism, war and disease spreading to show that conventional recipes, such as deterrence strategies, are often not effective and sufficient to contain them. Many common approaches do not provide a good picture of the actual system behavior, because they neglect feedback loops, instabilities and cascade effects. The complex and often counter-intuitive behavior of social systems and their macro-level collective dynamics can be better understood by means of complexity science. We highlight that a suitable system design and management can help to stop undesirable cascade effects and to enable favorable kinds of self-organization in the system. In such a way, complexity science can help to save human lives.
154 - Luo-Luo Jiang , Matjaz Perc 2013
Recent empirical research has shown that links between groups reinforce individuals within groups to adopt cooperative behaviour. Moreover, links between networks may induce cascading failures, competitive percolation, or contribute to efficient tran sportation. Here we show that there in fact exists an intermediate fraction of links between groups that is optimal for the evolution of cooperation in the prisoners dilemma game. We consider individual groups with regular, random, and scale-free topology, and study their different combinations to reveal that an intermediate interdependence optimally facilitates the spreading of cooperative behaviour between groups. Excessive between-group links simply unify the two groups and make them act as one, while too rare between-group links preclude a useful information flow between the two groups. Interestingly, we find that between-group links are more likely to connect two cooperators than in-group links, thus supporting the conclusion that they are of paramount importance.
Containing the spreading of crime is a major challenge for society. Yet, since thousands of years, no effective strategy has been found to overcome crime. To the contrary, empirical evidence shows that crime is recurrent, a fact that is not captured well by rational choice theories of crime. According to these, strong enough punishment should prevent crime from happening. To gain a better understanding of the relationship between crime and punishment, we consider that the latter requires prior discovery of illicit behavior and study a spatial version of the inspection game. Simulations reveal the spontaneous emergence of cyclic dominance between criminals, inspectors, and ordinary people as a consequence of spatial interactions. Such cycles dominate the evolutionary process, in particular when the temptation to commit crime or the cost of inspection are low or moderate. Yet, there are also critical parameter values beyond which cycles cease to exist and the population is dominated either by a stable mixture of criminals and inspectors or one of these two strategies alone. Both continuous and discontinuous phase transitions to different final states are possible, indicating that successful strategies to contain crime can be very much counter-intuitive and complex. Our results demonstrate that spatial interactions are crucial for the evolutionary outcome of the inspection game, and they also reveal why criminal behavior is likely to be recurrent rather than evolving towards an equilibrium with monotonous parameter dependencies.
Punishment may deter antisocial behavior. Yet to punish is costly, and the costs often do not offset the gains that are due to elevated levels of cooperation. However, the effectiveness of punishment depends not only on how costly it is, but also on the circumstances defining the social dilemma. Using the snowdrift game as the basis, we have conducted a series of economic experiments to determine whether severe punishment is more effective than mild punishment. We have observed that severe punishment is not necessarily more effective, even if the cost of punishment is identical in both cases. The benefits of severe punishment become evident only under extremely adverse conditions, when to cooperate is highly improbable in the absence of sanctions. If cooperation is likely, mild punishment is not less effective and leads to higher average payoffs, and is thus the much preferred alternative. Presented results suggest that the positive effects of punishment stem not only from imposed fines, but may also have a psychological background. Small fines can do wonders in motivating us to chose cooperation over defection, but without the paralyzing effect that may be brought about by large fines. The later should be utilized only when absolutely necessary.
Networks of fast-spiking interneurons are crucial for the generation of neural oscillations in the brain. Here we study the synchronous behavior of interneuronal networks that are coupled by delayed inhibitory and fast electrical synapses. We find th at both coupling modes play a crucial role by the synchronization of the network. In addition, delayed inhibitory synapses affect the emerging oscillatory patterns. By increasing the inhibitory synaptic delay, we observe a transition from regular to mixed oscillatory patterns at a critical value. We also examine how the unreliability of inhibitory synapses influences the emergence of synchronization and the oscillatory patterns. We find that low levels of reliability tend to destroy synchronization, and moreover, that interneuronal networks with long inhibitory synaptic delays require a minimal level of reliability for the mixed oscillatory pattern to be maintained.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا