ترغب بنشر مسار تعليمي؟ اضغط هنا

Saving Human Lives: What Complexity Science and Information Systems can Contribute

47   0   0.0 ( 0 )
 نشر من قبل Matjaz Perc
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss models and data of crowd disasters, crime, terrorism, war and disease spreading to show that conventional recipes, such as deterrence strategies, are often not effective and sufficient to contain them. Many common approaches do not provide a good picture of the actual system behavior, because they neglect feedback loops, instabilities and cascade effects. The complex and often counter-intuitive behavior of social systems and their macro-level collective dynamics can be better understood by means of complexity science. We highlight that a suitable system design and management can help to stop undesirable cascade effects and to enable favorable kinds of self-organization in the system. In such a way, complexity science can help to save human lives.

قيم البحث

اقرأ أيضاً

Opinion formation is an important element of social dynamics. It has been widely studied in the last years with tools from physics, mathematics and computer science. Here, a continuous model of opinion dynamics for multiple possible choices is analys ed. Its main features are the inclusion of disagreement and possibility of modulating information, both from one and multiple sources. The interest is in identifying the effect of the initial cohesion of the population, the interplay between cohesion and information extremism, and the effect of using multiple sources of information that can influence the system. Final consensus, especially with external information, depends highly on these factors, as numerical simulations show. When no information is present, consensus or segregation is determined by the initial cohesion of the population. Interestingly, when only one source of information is present, consensus can be obtained, in general, only when this is extremely mild, i.e. there is not a single opinion strongly promoted, or in the special case of a large initial cohesion and low information exposure. On the contrary, when multiple information sources are allowed, consensus can emerge with an information source even when this is not extremely mild, i.e. it carries a strong message, for a large range of initial conditions.
73 - Ruiwu Niu , Xiaoqun Wu , Ju-an Lu 2018
This paper mainly discusses the diffusion on complex networks with time-varying couplings. We propose a model to describe the adaptive diffusion process of local topological and dynamical information, and find that the Barabasi-Albert scale-free netw ork (BA network) is beneficial to the diffusion and leads nodes to arrive at a larger state value than other networks do. The ability of diffusion for a node is related to its own degree. Specifically, nodes with smaller degrees are more likely to change their states and reach larger values, while those with larger degrees tend to stick to their original states. We introduce state entropy to analyze the thermodynamic mechanism of the diffusion process, and interestingly find that this kind of diffusion process is a minimization process of state entropy. We use the inequality constrained optimization method to reveal the restriction function of the minimization and find that it has the same form as the Gibbs free energy. The thermodynamical concept allows us to understand dynamical processes on complex networks from a brand-new perspective. The result provides a convenient means of optimizing relevant dynamical processes on practical circuits as well as related complex systems.
134 - M. Ausloos 2011
(shortened version) Religions and languages are social variables, like age, sex, wealth or political opinions, to be studied like any other organizational parameter. In fact, religiosity is one of the most important sociological aspects of population s. Languages are also a characteristics of the human kind. New religions, new languages appear though others disappear. All religions and languages evolve when they adapt to the society developments. On the other hand, the number of adherents of a given religion, the number of persons speaking a language is not fixed. Several questions can be raised. E.g. from a macroscopic point of view : How many religions/languages exist at a given time? What is their distribution? What is their life time? How do they evolve?. From a microscopic view point: can one invent agent based models to describe macroscopic aspects? Does it exist simple evolution equations? It is intuitively accepted, but also found through from statistical analysis of the frequency distribution that an attachment process is the primary cause of the distribution evolution : usually the initial religion/language is that of the mother. Later on, changes can occur either due to heterogeneous agent interaction processes or due to external field constraints, - or both. Such cases can be illustrated with historical facts and data. It is stressed that characteristic time scales are different, and recalled that external fields are very relevant in the case of religions, rending the study more interesting within a mechanistic approach
Parents - particularly moms - increasingly consult social media for support when taking decisions about their young children, and likely also when advising other family members such as elderly relatives. Minimizing malignant online influences is ther efore crucial to securing their assent for policies ranging from vaccinations, masks and social distancing against the pandemic, to household best practices against climate change, to acceptance of future 5G towers nearby. Here we show how a strengthening of bonds across online communities during the pandemic, has led to non-Covid-19 conspiracy theories (e.g. fluoride, chemtrails, 5G) attaining heightened access to mainstream parent communities. Alternative health communities act as the critical conduits between conspiracy theorists and parents, and make the narratives more palatable to the latter. We demonstrate experimentally that these inter-community bonds can perpetually generate new misinformation, irrespective of any changes in factual information. Our findings show explicitly why Facebooks current policies have failed to stop the mainstreaming of non-Covid-19 and Covid-19 conspiracy theories and misinformation, and why targeting the largest communities will not work. A simple yet exactly solvable and empirically grounded mathematical model, shows how modest tailoring of mainstream communities couplings could prevent them from tipping against establishment guidance. Our conclusions should also apply to other social media platforms and topics.
This chapter introduces statistical methods used in the analysis of social networks and in the rapidly evolving parallel-field of network science. Although several instances of social network analysis in health services research have appeared recentl y, the majority involve only the most basic methods and thus scratch the surface of what might be accomplished. Cutting-edge methods using relevant examples and illustrations in health services research are provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا