ترغب بنشر مسار تعليمي؟ اضغط هنا

237 - M.Persic 2014
A basic quantity in the characterization of relativistic particles is the proton-to-electron (p/e) energy density ratio. We derive a simple approximate expression suitable to estimate this quantity, U_p/U_e = (m_p/m_e)^(3-q)/2, valid when a nontherma l `gas of these particles is electrically neutral and the particles power-law spectral indices are equal -- e.g., at injection. This relation partners the well-known p/e number density ratio at 1 GeV, i.e. N_p/N_e = (m_p/m_e)^{(q-1)/2}.
62 - Massimo Persic 2013
Very high energy (VHE; E > 100 GeV) gamma-rays provide a unique probe into the non-thermal processes in the universe. The ground-based Imaging Air Cherenkov telescopes (IACTs) for detecting VHE gamma-rays have been perfected, so a relatively fast and inexpensive assembly of IACTs is now possible. Next generation instruments will have a sensitivity about 10 times better than current facilities, and will extend the accessible gamma-ray bandwidth at both energy ends (down to 30 GeV and up to 300 TeV) with improved angular and energy resolutions. Some key physics drivers, that are discussed here, suit specific features of the upcoming IACT facility, the Cherenkov Telescope Array (CTA). The resulting technical solutions chosen for CTA, and the current status of the project, are also outlined.
The energy density of energetic protons, U_p, in several nearby starburst nuclei (SBNs) has been directly deduced from gamma-ray measurements of the radiative decay of neutral pions produced in interactions with ambient protons. Lack of sufficient se nsitivity and spatial resolution makes this direct deduction unrealistic in the foreseeable future for even moderately distant SBNs. A more viable indirect method for determining U_p in star-forming galaxies is to use its theoretically based scaling to the energy density of energetic electrons, U_e, which can be directly deduced from radio synchrotron and possibly also nonthermal hard X-ray emission. In order to improve the quantitative basis and diagnostic power of this leptonic method we reformulate and clarify its main aspects. Doing so we obtain a basic expression for the ratio U_p/U_e in terms of the proton and electron masses and the power-law indices that characterize the particle spectral distributions in regions where the total particle energy density is at equipartition with that of the mean magnetic field. We also express the field strength and the particle energy density in the equipartition region in terms of the regions size, mean gas density, IR and radio fluxes, and distance from the observer, and determine values of U_p in a sample of nine nearby and local SBNs.
The Extragalactic Background Light (EBL) is the integrated light from all the stars that have ever formed, and spans the IR-UV range. The interaction of very-high-energy (VHE: E>100 GeV) gamma-rays, emitted by sources located at cosmological distance s, with the intervening EBL results in electron-positron pair production that leads to energy-dependent attenuation of the observed VHE flux. This introduces a fundamental ambiguity in the interpretation of measured VHE gamma-ray spectra: neither the intrinsic spectrum, nor the EBL, are separately known -- only their combination is. In this paper we propose a method to measure the EBL photon number density. It relies on using simultaneous observations of BL Lac objects in the optical, X-ray, high-energy (HE: E>100 MeV) gamma-ray (from the Fermi telescope), and VHE gamma-ray (from Cherenkov telescopes) bands. For each source, the method involves best-fitting the spectral energy distribution (SED) from optical through HE gamma-rays (the latter being largely unaffected by EBL attenuation as long as z<1) with a Synchrotron Self-Compton (SSC) model. We extrapolate such best-fitting models into the VHE regime, and assume they represent the BL Lacs intrinsic emission. Contrasting measured versus intrinsic emission leads to a determination of the photon-photon opacity to VHE photons. Using, for each given source, different states of emission will only improve the accuracy of the proposed method. We demonstrate this method using recent simultaneous multi-frequency observations of the high-frequency-peaked BL Lac object PKS 2155-304 and discuss how similar observations can more accurately probe the EBL.
Cosmic-ray energy densities in central regions of starburst galaxies, as inferred from radio and gamma-ray measurements of, respectively, non-thermal synchrotron and neutral pion decay emission, are typically U_p = O(100)eV/cm3, i.e. typically at lea st an order of magnitude larger than near the Galactic center and in other non-very-actively star-forming galaxies. We first show that these very different energy-density levels reflect a similar disparity in the respective supernova rates in the two environments, which is not unexpected given the supernova origin of (Galactic) energetic particles. As a consequence of this correspondence, we then demonstrate that there is partial quantitative evidence that the stellar initial mass function (IMF) in starburst nuclei has a low-mass truncation at ~2M_sun, as predicted by theoretical models of turbulent media, in contrast with the much smaller value of 0.1M_sun that characterizes the low-mass cutoff of the stellar IMF in `normal galactic environments.
The Extragalactic Background Light (EBL) is the integrated light from all the stars that have ever formed, and spans the IR-UV range. The interaction of very-high-energy (VHE: E>100 GeV) gamma-rays, emitted by sources located at cosmological distance s, with the intervening EBL results in electron-positron pair production that leads to energy-dependent attenuation of the observed VHE flux. This introduces a fundamental ambiguity in the interpretation of the measured VHE blazar spectra: neither the intrinsic spectra, nor the EBL, are separately known - only their combination is. In this paper we propose a method to measure the EBL photon number density. It relies on using simultaneous observations of blazars in the optical, X-ray, high-energy (HE: E>100 MeV) gamma-ray (from the Fermi telescope), and VHE gamma-ray (from Cherenkov telescopes) bands. For each source, the method involves best-fitting the spectral energy distribution (SED) from optical through HE gamma-rays (the latter being largely unaffected by EBL attenuation as long as z<1) with a Synchrotron Self-Compton (SSC) model. We extrapolate such best-fitting models into the VHE regime, and assume they represent the blazars intrinsic emission. Contrasting measured versus intrinsic emission leads to a determination of the gamma-gamma opacity to VHE photons - hence, upon assuming a specific cosmology, we derive the EBL photon number density. Using, for each given source, different states of emission will only improve the accuracy of the proposed method. We demonstrate this method using recent simultaneous multi-frequency observations of the blazar PKS2155-304 and discuss how similar observations can more accurately probe the EBL.
94 - A. De Angelis 2008
Recent findings by gamma-ray Cherenkov telescopes suggest a higher transparency of the Universe to very-high-energy (VHE) photons than expected from current models of the Extragalactic Background Light. It has been shown that such transparency can be naturally explained by the DARMA scenario, in which the photon mixes with a new, very light, axion-like particle predicted by many extensions of the Standard Model of elementary particles. We discuss the implications of DARMA for the VHE gamma-ray spectra of blazars, and show that it successfully accounts for the observed correlation between spectral slope and redshift by adopting for far-away sources the same emission spectrum characteristic of nearby ones. DARMA also predicts the observed blazar spectral index to become asymptotically independent of redshift for far-away sources. Our prediction can be tested with the satellite-borne Fermi/LAT detector as well as with the ground-based Cherenkov telescopes HESS, MAGIC, CANGAROOIII, VERITAS and the Extensive Air Shower arrays ARGO-YBJ and MILAGRO.
459 - M.Persic , A.DeAngelis , F.Longo 2007
We describe the emission properties of blazars, i.e. the AGNs that, due to their peculiar orientation w.r.t. the observer, allow the most penetrating and direct view of their central engine. After showing that the extragalactic GeV-TeV sky is dominat ed by blazars of various types, we discuss the kind of blazars that are likely to be jointly detected by AGILE and MAGIC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا