ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer and Caltech Submillimeter Observatory (CSO) images and spectrophotometry of epsilon Eridani at wavelengths from 3.5 to 350 um reveal new details of its bright debris disk. The 350 um map confirms the presence of a ring at r = 11-28 arcsec (35 -90 AU) observed previously at longer sub-mm wavelengths. The Spitzer mid- and far-IR images do not show the ring, but rather a featureless disk extending from within a few arcsec of the star across the ring to r ~ 34 arcsec (110 AU). The spectral energy distribution (SED) of the debris system implies a complex structure. A model constrained by the surface brightness profiles and the SED indicates that the sub-mm ring emission is primarily from large (a ~ 135 um) grains, with smaller (a ~ 15 um) grains also present in and beyond the ring. The Spitzer IRS and MIPS SED-mode spectrophotometry data clearly show the presence of spatially compact excess emission at lambda > 15 um that requires the presence of two additional narrow belts of dust within the sub-mm rings central void. The innermost belt at r ~ 3 AU is composed of silicate dust. A simple dynamical model suggests that dust produced collisionally by a population of about 11 M_Earth of planetesimals in the sub-mm ring could be the source of the emission from both in and beyond the sub-mm ring. Maintaining the inner belts and the inner edge to the sub-mm ring may require the presence of three planets in this system including the candidate radial velocity object.
We present here the first observation of galactic AGB stars with the InfraRed Array Camera (IRAC) onboard the Spitzer Space Telescope. Our sample consists of 48 AGB stars of different chemical signature, mass loss rate and variability class. For each star we have measured IRAC photometry and colors. Preliminary results shows that IRAC colors are sensitive to spectroscopic features associated to molecules and dust in the AGB wind. Period is only loosely correlated to the brightness of the stars in the IRAC bands. We do find, however, a tight period-color relation for sources classified as semiregular variables. This may be interpreted as the lack of warm dust in the wind of the sources in this class, as opposed to Mira variables that show higher infrared excess in all IRAC bands.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا