ترغب بنشر مسار تعليمي؟ اضغط هنا

The Berezinskii-Kosterlitz-Thouless mechanism, in which a phase transition is mediated by the proliferation of topological defects, governs the critical behaviour of a wide range of equilibrium two-dimensional systems with a continuous symmetry, rang ing from superconducting thin films to two-dimensional Bose fluids, such as liquid helium and ultracold atoms. We show here that this phenomenon is not restricted to thermal equilibrium, rather it survives more generally in a dissipative highly non-equilibrium system driven into a steady-state. By considering a light-matter superfluid of polaritons, in the so-called optical parametric oscillator regime, we demonstrate that it indeed undergoes a vortex binding-unbinding phase transition. Yet, the exponent of the power-law decay of the first order correlation function in the (algebraically) ordered phase can exceed the equilibrium upper limit -- a surprising occurrence, which has also been observed in a recent experiment. Thus we demonstrate that the ordered phase is somehow more robust against the quantum fluctuations of driven systems than thermal ones in equilibrium.
Solid state quantum condensates can differ from other condensates, such as Helium, ultracold atomic gases, and superconductors, in that the condensing quasiparticles have relatively short lifetimes, and so, as for lasers, external pumping is required to maintain a steady state. In this chapter we present a non-equilibrium path integral approach to condensation in a dissipative environment and apply it to microcavity polaritons, driven out of equilibrium by coupling to multiple baths, describing pumping and decay. Using this, we discuss the relation between non-equilibrium polariton condensation, lasing, and equilibrium condensation.
We study the properties of propagating polariton wave-packets and their connection to the stability of doubly charged vortices. Wave-packet propagation and related photoluminescence spectra exhibit a rich behaviour dependent on the excitation regime. We show that, because of the non-quadratic polariton dispersion, doubly charged vortices are stable only when initiated in wave-packets propagating at small velocities. Vortices propagating at larger velocities, or those imprinted directly into the polariton optical parametric oscillator (OPO) signal and idler are always unstable to splitting.
Solid state quantum condensates often differ from previous examples of condensates (such as Helium, ultra-cold atomic gases, and superconductors) in that the quasiparticles condensing have relatively short lifetimes, and so as for lasers, external pu mping is required to maintain a steady state. On the other hand, compared to lasers, the quasiparticles are generally more strongly interacting, and therefore better able to thermalise. This leads to questions of how to describe such non-equilibrium condensates, and their relation to equilibrium condensates and lasers. This chapter discusses in detail how the non-equilibrium Greens function approach can be applied to the description of such a non-equilibrium condensate, in particular, a system of microcavity polaritons, driven out of equilibrium by coupling to multiple baths. By considering the steady states, and fluctuations about them, it is possible to provide a description that relates both to equilibrium condensation and to lasing, while at the same time, making clear the differences from simple lasers.
Fast sweep projection onto Feshbach molecules has been widely used as a probe of fermionic condensates. By determining the exact dynamics of a pair of atoms in time varying magnetic fields, we calculate the number of condensed and noncondensed molecu les created after fast magnetic field sweeps from the BCS to the BEC side of the resonances in $^{40}$K and $^{6}$Li, for different sweep rates and a range of initial and final fields. We discuss the relation between the initial fermionic condensate fraction and the molecular condensate fraction measured after the sweep.
We analyse the spatial and temporal coherence properties of a two-dimensional and finite sized polariton condensate with parameters tailored to the recent experiments which have shown spontaneous and thermal equilibrium polariton condensation in a Cd Te microcavity [J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, et al., Nature 443 (7110) (2006) 409]. We obtain a theoretical estimate of the thermal length, the lengthscale over which full coherence effectively exists (and beyond which power-law decay of correlations in a two-dimensional condensate occurs), of the order of 5 micrometers. In addition, the exponential decay of temporal coherence predicted for a finite size system is consistent with that found in the experiment. From our analysis of the luminescence spectra of the polariton condensate, taking into account pumping and decay, we obtain a dispersionless region at small momenta of the order of 4 degrees. In addition, we determine the polariton linewidth as a function of the pump power. Finally, we discuss how, by increasing the exciton-photon detuning, it is in principle possible to move the threshold for condensation from a region of the phase diagram where polaritons can be described as a weakly interacting Bose gas to a region where instead the composite nature of polaritons becomes important.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا