ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple scattering is a process in which a particle is repeatedly deflected by other particles. In an overwhelming majority of cases, the ensuing random walk can successfully be described through Gaussian, or normal, statistics. However, like a (gro wing) number of other apparently inofensive systems, diffusion of light in dilute atomic vapours eludes this familiar interpretation, exhibiting a superdiffusive behavior. As opposed to normal diffusion, whereby the particle executes steps in random directions but with lengths slightly varying around an average value (like a drunkard whose next move is unpredictable but certain to within a few tens of centimeters), superdiffusion is characterized by sudden abnormally long steps (L{e}vy flights) interrupting sequences of apparently regular jumps which, although very rare, determine the whole dynamics of the system. The formal statistics tools to describe superdiffusion already exist and rely on stable, well understood distributions. As scientists become aware of, and more familiar with, this non-orthodox possibility of interpretation of random phenomena, new systems are discovered or re-interpreted as following L{e}vy statistics. Propagation of light in resonant atomic vapours is one of these systems that have been studied for decades and have only recently been shown to be the scene of L{e}vy flights.
We demonstrate and interpret a technique of laser-induced formation of thin metallic films using alkali atoms on the window of a dense-vapour cell. We show that this intriguing photo-stimulated process originates from the adsorption of Cs atoms via t he neutralisation of Cs$^+$ ions by substrate electrons. The Cs$^+$ ions are produced via two-photon absorption by excited Cs atoms very close to the surface, which enables the transfer of the laser spatial intensity profile to the film thickness. An initial decrease of the surface work function is required to guarantee Cs$^+$ neutralisation and results in a threshold in the vapour density. This understanding of the film growth mechanism may facilitate the development of new techniques of laser-controlled lithography, starting from thermal vapours.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا