ترغب بنشر مسار تعليمي؟ اضغط هنا

The macroscopic magnetic moment of a superparamagnetic system has to overcome an energy barrier in order to switch its direction. This barrier is formed by magnetic anisotropies in the material and may be surmounted typically after 10^9 to 10^12 atte mpts per second by thermal fluctuations. In a first step, the associated switching rate may be described by a Neel-Brown-Arrhenius law, in which the energy barrier is assumed as constant or a given temperature. Yet, magnetic anisotropies in general depend on temperature themselves which is known to modify the Neel-Brown-Arrhenius law. We illustrate quantitatively the implications of a temperature-dependent anisotropy on the switching rate and in particular for the interpretation of the prefactor as an attempt frequency. In particular, we show that realistic numbers for the attempt frequency are obtained when the temperature dependence of the anisotropy is taken into account.
In conventional domain wall systems the aim of a high domain wall velocity may be hindered by the occurrence of a Walker breakdown at comparably low current density. We show how a Rashba interaction can stabilize the domain wall dynamics and thereby shift the Walker breakdown to higher current densities. The Rashba interaction creates a field like spin torque, which breaks the symmetry of the system and modifies the internal structure of the domain wall. Besides a shift of the Walker breakdown it can additionally induce a chirality switch of the domain wall at sufficient Rashba fields. The preferred chirality may then be chosen by the direction of the current flow. Both, the suppression of the Walker breakdown and the chirality switching, affect the domain wall velocity. This is even more pronounced for short current pulses, where an additional domain wall movement after the pulse in either positive or negative direction can determine the final position of the domain wall.
64 - M. Stier , W. Nolting 2011
We investigate the influence of the carrier density and other parameters on the interlayer exchange in magnetic thin film systems. The system consists of ferromagnetic and non-magnetic layers where the carriers are allowed to move from layer to layer . For the ferromagnetic layers we use the Kondo-lattice model to describe interactions between itinerant electrons and local moments. The electrons properties are calculated by a Greens functions equation of motion approach while the magnetization of the local moments is determined by a minimization of the free energy. As results we present magnetic phase diagrams and the interlayer exchange over a broad parameter range. Additionally we can calculate the transition temperatures for different alignments of the ferromagnetic layers magnetizations.
We investigate the existence of several (anti-)ferromagnetic phases in the diluted ferromagnetic Kondo-lattice model, i.e. ferromagnetic coupling of local moment and electron spin. To do this we use a coherent potential approximation (CPA) with a dyn amical alloy analogy. For the CPA we need effective potentials, which we get first from a mean-field approximation. To improve this treatment we use in the next step a more appropriate moment conserving decoupling approach and compare both methods. The different magnetic phases are modelled by defining two magnetic sublattices. As a result we present zero-temperature phase diagrams according to the important model parameters and different dilutions.
51 - M. Stier , W. Nolting 2011
We present a theory to model carrier mediated ferromagnetism in concentrated or diluted local moment systems. The electronic subsystem of the Kondo lattice model is described by a combined equation of motion / coherent potential approximation method. Doing this we can calculate the free energy of the system and its minimum according to the magnetization of the local moments. Thus also the Curie temperature can be determined and its dependence on important model parameters. We get qualitative agreement with the Curie temperatures experimental values of Ga$_{1-x}$Mn$_x$As for a proper hole density.
109 - M. Stier , W. Nolting 2008
We use an extended two-band Kondo lattice model (KLM) to investigate the occurrence of different (anti-)ferromagnetic phases or phase separation depending on several model parameters. With regard to CMR-materials like the manganites we have added a J ahn-Teller term, direct antiferromagnetic coupling and Coulomb interaction to the KLM. The electronic properties are self-consistently calculated in an interpolating self-energy approach with no restriction to classical spins and going beyond mean-field treatments. Further on we do not have to limit the Hunds coupling to low or infinite values. Zero-temperature phase diagrams are presented for large parameter intervals. There are strong influences of the type of Coulomb interaction (intraband, interband) and of the important parameters (Hunds coupling, direct antiferromagnetic exchange, Jahn-Teller distortion), especially at intermediate couplings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا