ترغب بنشر مسار تعليمي؟ اضغط هنا

We present measurements of circular polarization from rotational spectral lines of molecular species in Orion KL, most notably 12CO (J=2 - 1), obtained at the Caltech Submillimeter Observatory with the Four-Stokes-Parameter Spectra Line Polarimeter. We find levels of polarization of up to 1 to 2% in general, for 12CO (J=2 - 1) this level is comparable to that of linear polarization also measured for that line. We present a physical model based on resonant scattering in an attempt to explain our observations. We discuss how slight differences in scattering amplitudes for radiation polarized parallel and perpendicular to the ambient magnetic field, responsible for the alignment of the scattering molecules, can lead to the observed circular polarization. We also show that the effect is proportional to the square of the magnitude of the plane of the sky component of the magnetic field, and therefore opens up the possibility of measuring this parameter from circular polarization measurements of Zeeman insensitive molecules.
119 - Martin Houde 2009
We expand our study on the dispersion of polarization angles in molecular clouds. We show how the effect of signal integration through the thickness of the cloud as well as across the area subtended by the telescope beam inherent to dust continuum me asurements can be incorporated in our analysis to correctly account for its effect on the measured angular dispersion and inferred turbulent to large-scale magnetic field strength ratio. We further show how to evaluate the turbulent magnetic field correlation scale from polarization data of sufficient spatial resolution and high enough spatial sampling rate. We apply our results to the molecular cloud OMC-1, where we find a turbulent correlation length of approximately 16 mpc, a turbulent to large-scale magnetic field strength ratio of approximately 0.5, and a plane-of-the-sky large-scale magnetic field strength of approximately 0.76 mG.
62 - Hua-bai Li 2008
We study the turbulent velocity dispersion spectra of the coexistent HCN and HCO+ molecular species as a function of length scale in the M17 star-forming molecular cloud. We show that the observed downward shift of the ions spectrum relative to that of the neutral is readily explained by the existence of an ambipolar diffusion range within which ion and neutral turbulent energies dissipate differently. We use these observations to evaluate this decoupling scale and show how to estimate the strength of the plane-of-the-sky component of the embedded magnetic field in a completely novel way.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا