ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive stars are very rare, but their extreme luminosities make them both the only type of young star we can observe in distant galaxies and the dominant energy sources in the universe today. They form rarely because efficient radiative cooling keep s most star-forming gas clouds close to isothermal as they collapse, and this favors fragmentation into stars <~1 Msun. Heating of a cloud by accreting low-mass stars within it can prevent fragmentation and allow formation of massive stars, but what properties a cloud must have to form massive stars, and thus where massive stars form in a galaxy, has not yet been determined. Here we show that only clouds with column densities >~ 1 g cm^-2 can avoid fragmentation and form massive stars. This threshold, and the environmental variation of the stellar initial mass function (IMF) that it implies, naturally explain the characteristic column densities of massive star clusters and the difference between the radial profiles of Halpha and UV emission in galactic disks. The existence of a threshold also implies that there should be detectable variations in the IMF with environment within the Galaxy and in the characteristic column densities of massive star clusters between galaxies, and that star formation rates in some galactic environments may have been systematically underestimated.
181 - Mark R. Krumholz 2007
The formation of massive stars is currently an unsolved problems in astrophysics. Understanding the formation of massive stars is essential because they dominate the luminous, kinematic, and chemical output of stars. Furthermore, their feedback is li kely to play a dominant role in the evolution of molecular clouds and any subsequent star formation therein. Although significant progress has been made observationally and theoretically, we still do not have a consensus as to how massive stars form. There are two contending models to explain the formation of massive stars, Core Accretion and Competitive Accretion. They differ primarily in how and when the mass that ultimately makes up the massive star is gathered. In the core accretion model, the mass is gathered in a prestellar stage due to the overlying pressure of a stellar cluster or a massive pre-cluster cloud clump. In contrast, competitive accretion envisions that the mass is gathered during the star formation process itself, being funneled to the centre of a stellar cluster by the gravitational potential of the stellar cluster. Although these differences may not appear overly significant, they involve significant differences in terms of the physical processes involved. Furthermore, the differences also have important implications in terms of the evolutionary phases of massive star formation, and ultimately that of stellar clusters and star formation on larger scales. Here we review the dominant models, and discuss prospects for developing a better understanding of massive star formation in the future.
We compute the molecular line emission of massive protostellar disks by solving the equation of radiative transfer through the cores and disks produced by the recent radiation-hydrodynamic simulations of Krumholz, Klein, & McKee. We find that in seve ral representative lines the disks show brightness temperatures of hundreds of Kelvin over velocity channels ~10 km s^-1 wide, extending over regions hundreds of AU in size. We process the computed intensities to model the performance of next-generation radio and submillimeter telescopes. Our calculations show that observations using facilities such as the EVLA and ALMA should be able to detect massive protostellar disks and measure their rotation curves, at least in the nearest massive star-forming regions. They should also detect significant sub-structure and non-axisymmetry in the disks, and in some cases may be able to detect star-disk velocity offsets of a few km s^-1, both of which are the result of strong gravitational instability in massive disks. We use our simulations to explore the strengths and weaknesses of different observational techniques, and we also discuss how observations of massive protostellar disks may be used to distinguish between alternative models of massive star formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا