ﻻ يوجد ملخص باللغة العربية
We compute the molecular line emission of massive protostellar disks by solving the equation of radiative transfer through the cores and disks produced by the recent radiation-hydrodynamic simulations of Krumholz, Klein, & McKee. We find that in several representative lines the disks show brightness temperatures of hundreds of Kelvin over velocity channels ~10 km s^-1 wide, extending over regions hundreds of AU in size. We process the computed intensities to model the performance of next-generation radio and submillimeter telescopes. Our calculations show that observations using facilities such as the EVLA and ALMA should be able to detect massive protostellar disks and measure their rotation curves, at least in the nearest massive star-forming regions. They should also detect significant sub-structure and non-axisymmetry in the disks, and in some cases may be able to detect star-disk velocity offsets of a few km s^-1, both of which are the result of strong gravitational instability in massive disks. We use our simulations to explore the strengths and weaknesses of different observational techniques, and we also discuss how observations of massive protostellar disks may be used to distinguish between alternative models of massive star formation.
We present high angular resolution dust polarization and molecular line observations carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostar Serpens SMM1. By complementing these observations with new pola
Molecular lines hold valuable information on the physical and chemical composition of disks around young stars, the likely progenitors of planetary systems. This invited contribution discusses techniques to calculate the molecular emission (and absor
[Abridged] The detection of the rotational lines of CO in proto-galaxies in the early Universe provides one of the most promising ways of probing the fundamental physical properties of a galaxy, such as its size, dynamical mass, gas density, and temp
We observe 1.3~mm spectral lines at 2000~AU resolution toward four massive molecular clouds in the Central Molecular Zone of the Galaxy to investigate their star formation activities. We focus on several potential shock tracers that are usually abund
NGC 4945 is one of the nearest (~3.8 Mpc; 1 ~ 19 pc) starburst galaxies. ALMA band 3 (3--4,mm) observations of HCN, HCO+, CS, C3H2, SiO, HCO, and CH3C2H were carried out with ~2 resolution. The lines reveal a rotating nuclear disk of projected size 1