ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Line Emission from Massive Protostellar Disks: Predictions for ALMA and the EVLA

68   0   0.0 ( 0 )
 نشر من قبل Mark R. Krumholz
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mark R. Krumholz




اسأل ChatGPT حول البحث

We compute the molecular line emission of massive protostellar disks by solving the equation of radiative transfer through the cores and disks produced by the recent radiation-hydrodynamic simulations of Krumholz, Klein, & McKee. We find that in several representative lines the disks show brightness temperatures of hundreds of Kelvin over velocity channels ~10 km s^-1 wide, extending over regions hundreds of AU in size. We process the computed intensities to model the performance of next-generation radio and submillimeter telescopes. Our calculations show that observations using facilities such as the EVLA and ALMA should be able to detect massive protostellar disks and measure their rotation curves, at least in the nearest massive star-forming regions. They should also detect significant sub-structure and non-axisymmetry in the disks, and in some cases may be able to detect star-disk velocity offsets of a few km s^-1, both of which are the result of strong gravitational instability in massive disks. We use our simulations to explore the strengths and weaknesses of different observational techniques, and we also discuss how observations of massive protostellar disks may be used to distinguish between alternative models of massive star formation.

قيم البحث

اقرأ أيضاً

We present high angular resolution dust polarization and molecular line observations carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostar Serpens SMM1. By complementing these observations with new pola rization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (~0.1 pc) scales -- where the magnetic field is oriented E-W, perpendicular to the major axis of the dusty filament where SMM1 is embedded -- and the intermediate and small scales probed by CARMA (~1000 AU resolution), the SMA (~350 AU resolution), and ALMA (~140 AU resolution). The ALMA maps reveal that the redshifted lobe of the bipolar outflow is shaping the magnetic field in SMM1 on the southeast side of the source; however, on the northwestern side and elsewhere in the source, low velocity shocks may be causing the observed chaotic magnetic field pattern. High-spatial-resolution continuum and spectral-line observations also reveal a tight (~130 AU) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both CO(2-1) and SiO(5-4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.
Molecular lines hold valuable information on the physical and chemical composition of disks around young stars, the likely progenitors of planetary systems. This invited contribution discusses techniques to calculate the molecular emission (and absor ption) line spectrum based on models for the physical and chemical structure of protoplanetary disks. Four examples of recent research illutrate these techniques in practice: matching resolved molecular-line emission from the disk around LkCa15 with theoertical models for the chemistry; evaluating the two-dimensional transfer of ultraviolet radiation into the disk, and the effect on the HCN/CN ratio; far-infrared CO line emission from a superheated disk surface layer; and inward motions in the disk around L1489 IRS.
[Abridged] The detection of the rotational lines of CO in proto-galaxies in the early Universe provides one of the most promising ways of probing the fundamental physical properties of a galaxy, such as its size, dynamical mass, gas density, and temp erature. While such observations are currently limited to the most luminous galaxies, the advent of ALMA will change the situation dramatically, resulting in the detection of numerous normal galaxies at high redshifts. Maps and spectra of rotational CO line emission were calculated from a cosmological N-body/hydrodynamical TreeSPH simulation of a z ~ 3 Lyman break galaxy of UV luminosity about one order of magnitude below L*. To simulate a typical observation of our system with ALMA, we imposed characteristic noise, angular, and spectral resolution constraints. The CO line properties predicted by our simulation are in good agreement with the two Lyman break systems detected in CO to date. We find that while supernovae explosions from the ongoing star formation carve out large cavities in the molecular ISM, they do not generate large enough gas outflows to make a substantial imprint on the CO line profile. This implies that for most proto-galaxies - except possibly the most extreme cases - stellar feedback effects do not affect CO as a dynamical mass tracer. Detecting CO in sub-L* galaxies at z ~3 will push ALMA to the limits of its cababilities, and whether a source is detected or not may depend critically on its inclination angle. Both these effects (sensitivity and inclination) will severely impair the ability of ALMA to infer the gas kinematics and dynamical masses using line observations.
We observe 1.3~mm spectral lines at 2000~AU resolution toward four massive molecular clouds in the Central Molecular Zone of the Galaxy to investigate their star formation activities. We focus on several potential shock tracers that are usually abund ant in protostellar outflows, including SiO, SO, CH$_3$OH, H$_2$CO, HC$_3$N, and HNCO. We identify 43 protostellar outflows, including 37 highly likely ones and 6 candidates. The outflows are found toward both known high-mass star forming cores and less massive, seemingly quiescent cores, while 791 out of the 834 cores identified based on the continuum do not have detected outflows. The outflow masses range from less than 1~$M_odot$ to a few tens of $M_odot$, with typical uncertainties of a factor of 70. We do not find evidence of disagreement between relative molecular abundances in these outflows and in nearby analogs such as the well-studied L1157 and NGC7538S outflows. The results suggest that i) protostellar accretion disks driving outflows ubiquitously exist in the CMZ environment, ii) the large fraction of candidate starless cores is expected if these clouds are at very early evolutionary phases, with a caveat on the potential incompleteness of the outflows, iii) high-mass and low-mass star formation is ongoing simultaneously in these clouds, and iv) current data do not show evidence of difference between the shock chemistry in the outflows that determines the molecular abundances in the CMZ environment and in nearby clouds.
107 - C. Henkel , S. Muehle , G. Bendo 2018
NGC 4945 is one of the nearest (~3.8 Mpc; 1 ~ 19 pc) starburst galaxies. ALMA band 3 (3--4,mm) observations of HCN, HCO+, CS, C3H2, SiO, HCO, and CH3C2H were carried out with ~2 resolution. The lines reveal a rotating nuclear disk of projected size 1 0 x 2 with position angle ~45 deg, inclination ~75 deg and an unresolved bright central core of size <2.5. The continuum source (mostly free-free radiation) is more compact than the nuclear disk by a linear factor of two but shows the same position angle and is centered 0.39 +_ 0.14 northeast of the nuclear accretion disk defined by H2O maser emission. Outside the nuclear disk, both HCN and CS delineate molecular arms on opposite sides of the dynamical center. These are connected by a (deprojected) 0.6 kpc sized molecular bridge, likely a dense gaseous bar seen almost ends-on, shifting gas from the front and back side into the nuclear disk. Modeling this nuclear disk located farther inside <100 pc) with tilted rings indicates a coplanar outflow reaching a characteristic deprojectd velocity of ~50 km/s. All our molecular lines, with the notable exception of CH3C2H, show significant absorption near the systemic velocity (~571 km/s), within a range of ~500-660 km/s. Apparently, only molecular transitions with low critical H2-density do not show absorption. The velocity field of the nuclear disk, derived from CH3C2H, provides evidence for rigid rotation in the inner few arcseconds and a dynamical mass of M = (2.1+_0.2) x 10^8 Mo inside a galactocentric radius of 2.45, with a significantly flattened rotation curve farther out. Velocity integrated line intensity maps with most pronounced absorption show molecular peak positions up to 1.5 southwest of the continuum peak, presumably due to absorption, which appears to be most severe slightly northeast of the nuclear maser disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا