ترغب بنشر مسار تعليمي؟ اضغط هنا

We deduce and discuss the implications of self-similarity for the stability in terms of robustness to failure of multiplexes, depending on interlayer degree correlations. First, we define self-similarity of multiplexes and we illustrate the concept i n practice using the configuration model ensemble. Circumscribing robustness to survival of the mutually percolated state, we find a new explanation based on self-similarity both for the observed fragility of interconnected systems of networks and for their robustness to failure when interlayer degree correlations are present. Extending the self-similarity arguments, we show that interlayer degree correlations can change completely the stability properties of self-similar multiplexes, so that they can even recover a zero percolation threshold and a continuous transition in the thermodynamic limit, qualitatively exhibiting thus the ordinary stability attributes of noninteracting networks. We confirm these results with numerical simulations.
Here we study the emergence of spontaneous leadership in large populations. In standard models of opinion dynamics, herding behavior is only obeyed at the local scale due to the interaction of single agents with their neighbors; while at the global s cale, such models are governed by purely diffusive processes. Surprisingly, in this paper we show that the combination of a strong separation of time scales within the population and a hierarchical organization of the influences of some agents on the others induces a phase transition between a purely diffusive phase, as in the standard case, and a herding phase where a fraction of the agents self-organize and lead the global opinion of the whole population.
Natural numbers can be divided in two non-overlapping infinite sets, primes and composites, with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the architecture of natural numbers with primes as building blo cks remains elusive. Here, we propose a new approach to decoding the architecture of natural numbers based on complex networks and stochastic processes theory. We introduce a parameter-free non-Markovian dynamical model that naturally generates random primes and their relation with composite numbers with remarkable accuracy. Our model satisfies the prime number theorem as an emerging property and a refined version of Cramers conjecture about the statistics of gaps between consecutive primes that seems closer to reality than the original Cramers version. Regarding composites, the model helps us to derive the prime factors counting function, giving the probability of distinct prime factors for any integer. Probabilistic models like ours can help to get deeper insights about primes and the complex architecture of natural numbers.
We present a simple and general framework to simulate statistically correct realizations of a system of non-Markovian discrete stochastic processes. We give the exact analytical solution and a practical an efficient algorithm alike the Gillespie algo rithm for Markovian processes, with the difference that now the occurrence rates of the events depend on the time elapsed since the event last took place. We use our non-Markovian generalized Gillespie stochastic simulation methodology to investigate the effects of non-exponential inter-event time distributions in the susceptible-infected-susceptible model of epidemic spreading. Strikingly, our results unveil the drastic effects that very subtle differences in the modeling of non-Markovian processes have on the global behavior of complex systems, with important implications for their understanding and prediction. We also assess our generalized Gillespie algorithm on a system of biochemical reactions with time delays. As compared to other existing methods, we find that the generalized Gillespie algorithm is the most general as it can be implemented very easily in cases, like for delays coupled to the evolution of the system, where other algorithms do not work or need adapt
We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing scale-free networks, and many real networks. The proof and the derivation of the giant component size do not require the assumption that networks are treelike. Our results rely only on the observation that self-similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in the hierarchy. We conjecture that this property is pivotal for percolation in networks.
Routing information through networks is a universal phenomenon in both natural and manmade complex systems. When each node has full knowledge of the global network connectivity, finding short communication paths is merely a matter of distributed comp utation. However, in many real networks nodes communicate efficiently even without such global intelligence. Here we show that the peculiar structural characteristics of many complex networks support efficient communication without global knowledge. We also describe a general mechanism that explains this connection between network structure and function. This mechanism relies on the presence of a metric space hidden behind an observable network. Our findings suggest that real networks in nature have underlying metric spaces that remain undiscovered. Their discovery would have practical applications ranging from routing in the Internet and searching social networks, to studying information flows in neural, gene regulatory networks, or signaling pathways.
Random scale-free networks are ultrasmall worlds. The average length of the shortest paths in networks of size N scales as lnlnN. Here we show that these ultrasmall worlds can be navigated in ultrashort time. Greedy routing on scale-free networks emb edded in metric spaces finds paths with the average length scaling also as lnlnN. Greedy routing uses only local information to navigate a network. Nevertheless, it finds asymptotically the shortest paths, a direct computation of which requires global topology knowledge. Our findings imply that the peculiar structure of complex networks ensures that the lack of global topological awareness has asymptotically no impact on the length of communication paths. These results have important consequences for communication systems such as the Internet, where maintaining knowledge of current topology is a major scalability bottleneck.
We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e ., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا