ترغب بنشر مسار تعليمي؟ اضغط هنا

We present analytic results for warehouse systems involving pairs of carousels. Specifically, for various picking strategies, we show that the sojourn time of the picker satisfies an integral equation that is a contraction mapping. As a result, numer ical approximations for performance measures such as the throughput of the system are extremely accurate and converge fast (e.g. within 5 iterations) to their real values. We present simulation results validating our results and examining more complicated strategies for pairs of carousels.
We investigate a computer network consisting of two layers occurring in, for example, application servers. The first layer incorporates the arrival of jobs at a network of multi-server nodes, which we model as a many-server Jackson network. At the se cond layer, active servers at these nodes act now as customers who are served by a common CPU. Our main result shows a separation of time scales in heavy traffic: the main source of randomness occurs at the (aggregate) CPU layer; the interactions between different types of nodes at the other layer is shown to converge to a fixed point at a faster time scale; this also yields a state-space collapse property. Apart from these fundamental insights, we also obtain an explicit approximation for the joint law of the number of jobs in the system, which is provably accurate for heavily loaded systems and performs numerically well for moderately loaded systems. The obtained results for the model under consideration can be applied to thread-pool dimensioning in application servers, while the technique seems applicable to other layered systems too.
Numerical evaluation of ruin probabilities in the classical risk model is an important problem. If claim sizes are heavy-tailed, then such evaluations are challenging. To overcome this, an attractive way is to approximate the claim sizes with a phase -type distribution. What is not clear though is how many phases are enough in order to achieve a specific accuracy in the approximation of the ruin probability. The goals of this paper are to investigate the number of phases required so that we can achieve a pre-specified accuracy for the ruin probability and to provide error bounds. Also, in the special case of a completely monotone claim size distribution we develop an algorithm to estimate the ruin probability by approximating the excess claim size distribution with a hyperexponential one. Finally, we compare our approximation with the heavy traffic and heavy tail approximations.
120 - Maria Vlasiou 2014
We review the theory of regenerative processes, which are processes that can be intuitively seen as comprising of i.i.d. cycles. Although we focus on the classical definition, we present a more general definition that allows for some form of dependen ce between two adjacent cycles, and mention two further extensions of the second definition. We mention the connection of regenerative processes to the single-server queue, to multi-server queues and more generally to Harris ergodic Markov chains and processes. In the main theorem, we pay some attention to the conditions under which a limiting distribution exists and provide references that should serve as a starting point for the interested reader.
63 - Maria Vlasiou 2014
We review the theory of renewal reward processes, which describes renewal processes that have some cost or reward associated with each cycle. We present a new simplified proof of the renewal reward theorem that mimics the proof of the elementary rene wal theorem and avoids the technicalities in the proof that is presented in most textbooks. Moreover, we mention briefly the extension of the theory to partial rewards, where it is assumed that rewards are not accrued only at renewal epochs but also during the renewal cycle. For this case, we present a counterexample which indicates that the standard conditions for the renewal reward theorem are not sufficient; additional regularity assumptions are necessary. We present a few examples to indicate the usefulness of this theory, where we prove the inspection paradox and Littles law through the renewal reward theorem.
We investigate the tail behaviour of the steady state distribution of a stochastic recursion that generalises Lindleys recursion. This recursion arises in queuing systems with dependent interarrival and service times, and includes alternating service systems and carousel storage systems as special cases. We obtain precise tail asymptotics in three qualitatively different cases, and compare these with existing results for Lindleys recursion and for alternating service systems.
This paper gives an overview of recent research on the performance evaluation and design of carousel systems. We discuss picking strategies for problems involving one carousel, consider the throughput of the system for problems involving two carousel s, give an overview of related problems in this area, and present an extensive literature review. Emphasis has been given on future research directions in this area.
We consider a model describing the waiting time of a server alternating between two service points. This model is described by a Lindley-type equation. We are interested in the time-dependent behaviour of this system and derive explicit expressions f or its time-dependent waiting-time distribution, the correlation between waiting times, and the distribution of the cycle length. Since our model is closely related to Lindleys recursion, we compare our results to those derived for Lindleys recursion.
We consider a polling system where a group of an infinite number of servers visits sequentially a set of queues. When visited, each queue is attended for a random time. Arrivals at each queue follow a Poisson process, and service time of each individ ual customer is drawn from a general probability distribution function. Thus, each of the queues comprising the system is, in isolation, an M/G/$infty$-type queue. A job that is not completed during a visit will have a new service time requirement sampled from the service-time distribution of the corresponding queue. To the best of our knowledge, this paper is the first in which an M/G/$infty$-type polling system is analysed. For this polling model, we derive the probability generating function and expected value of the queue lengths, and the Laplace-Stieltjes transform and expected value of the sojourn time of a customer. Moreover, we identify the policy that maximises the throughput of the system per cycle and conclude that under the Hamiltonian-tour approach, the optimal visiting order is emph{independent} of the number of customers present at the various queues at the start of the cycle.
We discuss a single-server multi-station alternating queue where the preparation times and the service times are auto- and cross-correlated. We examine two cases. In the first case, preparation and service times depend on a common discrete time Marko v chain. In the second case, we assume that the service times depend on the previous preparation time through their joint Laplace transform. The waiting time process is directly analysed by solving a Lindley-type equation via transform methods. Numerical examples are included to demonstrate the effect of the autocorrelation of and the cross-correlation between the preparation and service times.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا