ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic lateral multilayers have been fabricated on weak perpendicular magnetic anisotropy amorphous Nd-Co films in order to perform a systematic study on the conditions for controlled nucleation of topological defects within their magnetic stripe d omain pattern. A lateral thickness modulation of period $w$ is defined on the nanostructured samples that, in turn, induces a lateral modulation of both magnetic stripe domain periods $lambda$ and average in-plane magnetization component $M_{inplane}$. Depending on lateral multilayer period and in-plane applied field, thin and thick regions switch independently during in-plane magnetization reversal and domain walls are created within the in-plane magnetization configuration coupled to variable angle grain boundaries and disclinations within the magnetic stripe domain patterns. This process is mainly driven by the competition between rotatable anisotropy (that couples the magnetic stripe pattern to in-plane magnetization) and in-plane shape anisotropy induced by the periodic thickness modulation. However, as the structural period $w$ becomes comparable to magnetic stripe period $lambda$, the nucleation of topological defects at the interfaces between thin and thick regions is hindered by a size effect and stripe domains in the different thickness regions become strongly coupled.
Perpendicular magnetic anisotropy ferromagnetic/ superconducting (FM/SC) bilayers with a labyrinth domain structure are used to study nucleation of superconductivity on a fractal network, tunable through magnetic history. As clusters of reversed doma ins appear in the FM layer, the SC film shows a percolative behavior that depends on two independent processes: the arrangement of initial reversed domains and the fractal geometry of expanding clusters. For a full labyrinth structure, the behavior of the upper critical field is typical of confined superconductivity on a fractal network.
We study both experimentally and theoretically the driven motion of domain walls in extended amorphous magnetic films patterned with a periodic array of asymmetric holes. We find two crossed ratchet effects of opposite sign that change the preferred sense for domain wall propagation, depending on whether a flat or a kinked wall is moving. By solving numerically a simple $phi^4$-model we show that the essential physical ingredients for this effect are quite generic and could be realized in other experimental systems involving elastic interfaces moving in multidimensional ratchet potentials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا