ترغب بنشر مسار تعليمي؟ اضغط هنا

Aims. We use advanced 3D NLTE radiative magnetohydrodynamic simulations of the solar atmosphere to carry out detailed tests of chromospheric diagnostics at millimeter and submillimeter wavelengths. Methods. We focused on the diagnostics of the therma l structure of the chromosphere in the wavelength bands from 0.4 mm up to 9.6 mm that can be accessed with the Atacama Large Millimeter/Submillimeter Array (ALMA) and investigated how these diagnostics are affected by the instrumental resolution. Results. We find that the formation height range of the millimeter radiation depends on the location in the simulation domain and is related to the underlying magnetic structure. Nonetheless, the brightness temperature is a reasonable measure of the gas temperature at the effective formation height at a given location on the solar surface. There is considerable scatter in this relationship, but this is significantly reduced when very weak magnetic fields are avoided. Our results indicate that although instrumental smearing reduces the correlation between brightness and temperature, millimeter brightness can still be used to reliably diagnose electron temperature up to a resolution of 1. If the resolution is more degraded, then the value of the diagnostic diminishes rapidly. Conclusions. We conclude that millimeter brightness can image the chromospheric thermal structure at the height at which the radiation is formed. Thus multiwavelength observations with ALMA with a narrow step in wavelength should provide sufficient information for a tomographic imaging of the chromosphere.
Aims: The aim of this paper is to demonstrate that millimeter wave data can be used to distinguish between various atmospheric models of sunspots, whose temperature structure in the upper photosphere and chromosphere has been the source of some contr oversy. Methods: We use observations of the temperature contrast (relative to the quiet Sun) above a sunspot umbra at 3.5 mm obtained with the Berkeley-Illinois-Maryland Array (BIMA), complemented by submm observations from Lindsey & Kopp (1995) and 2 cm observations with the Very Large Array. These are compared with the umbral contrast calculated from various atmospheric models of sunspots. Results: Current mm and submm observational data suggest that the brightness observed at these wavelengths is low compared to the most widely used sunspot models. These data impose strong constraints on the temperature and density stratifications of the sunspot umbral atmosphere, in particular on the location and depth of the temperature minimum and the location of the transition region. Conclusions: A successful model that is in agreement with millimeter umbral brightness should have an extended and deep temperature minimum (below 3000 K). Better spatial resolution as well as better wavelength coverage are needed for a more complete determination of the chromospheric temperature stratification above sunspot umbrae.
Aims. We analyze observational data from 4 instruments to study the correlations between chromospheric emission, spanning the heights from the temperature minimum region to the middle chromosphere, and photospheric magnetic field. Methods: The data c onsist of radio images at 3.5 mm from the Berkeley-Illinois-Maryland Array (BIMA), UV images at 1600 A from TRACE, Ca II K-line filtergrams from BBSO, and MDI/SOHO longitudinal photospheric magnetograms. For the first time interferometric millimeter data with the highest currently available resolution are included in such an analysis. We determine various parameters of the intensity maps and correlate the intensities with each other and with the magnetic field. Results: The chromospheric diagnostics studied here show a pronounced similarity in their brightness structures and map out the underlying photospheric magnetic field relatively well. We find a power law to be a good representation of the relationship between photospheric magnetic field and emission from chromospheric diagnostics at all wavelengths. The dependence of chromospheric brightness on magnetic field is found to be different for network and internetwork regions.
The very nature of the solar chromosphere, its structuring and dynamics, remains far from being properly understood, in spite of intensive research. Here we point out the potential of chromospheric observations at millimeter wavelengths to resolve th is long-standing problem. Computations carried out with a sophisticated dynamic model of the solar chromosphere due to Carlsson and Stein demonstrate that millimeter emission is extremely sensitive to dynamic processes in the chromosphere and the appropriate wavelengths to look for dynamic signatures are in the range 0.8-5.0 mm. The model also suggests that high resolution observations at mm wavelengths, as will be provided by ALMA, will have the unique property of reacting to both the hot and the cool gas, and thus will have the potential of distinguishing between rival models of the solar atmosphere. Thus, initial results obtained from the observations of the quiet Sun at 3.5 mm with the BIMA array (resolution of 12 arcsec) reveal significant oscillations with amplitudes of 50-150 K and frequencies of 1.5-8 mHz with a tendency toward short-period oscillations in internetwork and longer periods in network regions. However higher spatial resolution, such as that provided by ALMA, is required for a clean separation between the features within the solar atmosphere and for an adequate comparison with the output of the comprehensive dynamic simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا