ترغب بنشر مسار تعليمي؟ اضغط هنا

Millimeter radiation from a 3D model of the solar atmosphere I. Diagnosing chromospheric thermal structure

61   0   0.0 ( 0 )
 نشر من قبل Maria Loukitcheva
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. We use advanced 3D NLTE radiative magnetohydrodynamic simulations of the solar atmosphere to carry out detailed tests of chromospheric diagnostics at millimeter and submillimeter wavelengths. Methods. We focused on the diagnostics of the thermal structure of the chromosphere in the wavelength bands from 0.4 mm up to 9.6 mm that can be accessed with the Atacama Large Millimeter/Submillimeter Array (ALMA) and investigated how these diagnostics are affected by the instrumental resolution. Results. We find that the formation height range of the millimeter radiation depends on the location in the simulation domain and is related to the underlying magnetic structure. Nonetheless, the brightness temperature is a reasonable measure of the gas temperature at the effective formation height at a given location on the solar surface. There is considerable scatter in this relationship, but this is significantly reduced when very weak magnetic fields are avoided. Our results indicate that although instrumental smearing reduces the correlation between brightness and temperature, millimeter brightness can still be used to reliably diagnose electron temperature up to a resolution of 1. If the resolution is more degraded, then the value of the diagnostic diminishes rapidly. Conclusions. We conclude that millimeter brightness can image the chromospheric thermal structure at the height at which the radiation is formed. Thus multiwavelength observations with ALMA with a narrow step in wavelength should provide sufficient information for a tomographic imaging of the chromosphere.

قيم البحث

اقرأ أيضاً

We use state-of-the-art, three-dimensional non-local thermodynamic equilibrium (non-LTE) radiative magnetohydrodynamic simulations of the quiet solar atmosphere to carry out detailed tests of chromospheric magnetic field diagnostics from free-free ra diation at millimeter and submillimeter wavelengths (mm/submm). The vertical component of the magnetic field was deduced from the mm/submm brightness spectra and the degree of circular polarization synthesized at millimeter frequencies. We used the frequency bands observed by the Atacama Large Millimeter/Submillimeter Array (ALMA) as a convenient reference. The magnetic field maps obtained describe the longitudinal magnetic field at the effective formation heights of the relevant wavelengths in the solar chromosphere. The comparison of the deduced and model chromospheric magnetic fields at the spatial resolution of both the model and current observations demonstrates a good correlation, but has a tendency to underestimate the model field. The systematic discrepancy of about 10 percent is probably due to averaging of the restored field over the heights contributing to the radiation, weighted by the strength of the contribution. On the whole, the method of probing the longitudinal component of the magnetic field with free-free emission at mm/submm wavelengths is found to be applicable to measurements of the weak quiet-Sun magnetic fields. However, successful exploitation of this technique requires very accurate measurements of the polarization properties (primary beam and receiver polarization response) of the antennas, which will be the principal factor that determines the level to which chromospheric magnetic fields can be measured. Consequently, high-resolution and high-precision observations of circularly polarized radiation at millimeter wavelengths can be a powerful tool for producing chromospheric longitudinal magnetograms.
There has been tremendous progress in the degree of realism of three-dimensional radiation magneto-hydrodynamic simulations of the solar atmosphere in the past decades. Four of the most frequently used numerical codes are Bifrost, CO5BOLD, MANCHA3D, and MURaM. Here we test and compare the wave propagation characteristics in model runs from these four codes by measuring the dispersion relation of acoustic-gravity waves at various heights. We find considerable differences between the various models. The height dependence of wave power, in particular of high-frequency waves, varies by up to two orders of magnitude between the models, and the phase difference spectra of several models show unexpected features, including $pm180^circ$ phase jumps.
171 - Lyndsay Fletcher 2012
This paper presents an overview of some recent observational and theoretical results on solar flares, with an emphasis on flare impulsive-phase chromospheric properties, including: electron diagnostics, optical and UV emission, and discoveries made b y the Hinode mission, especially in the EUV. A brief perspective on future observations and theoretical requirements is also given
The reconstruction of the solar spectral irradiance (SSI) on various time scales is essential for the understanding of the Earths climate response to the SSI variability. The driver of the SSI variability is understood to be the intensity contrast of magnetic features present on the Sun with respect to the largely non-magnetic quiet Sun. However, different spectral synthesis codes lead to diverging projections of SSI variability. In this study we compare three different radiative transfer codes and carry out a detailed analysis of their performance. We perform the spectral synthesis at the continuum wavelength of 665 nm with the Code for Solar Irradiance (COSI), and the Rybicki-Hummer (RH), and Max Planck University of Chicago Radiative MHD (MURaM) codes for three 3D MHD simulations snapshots, a non-magnetic case, and MHD simulations with 100 G, and 200 G magnetic field strength. We determine the intensity distributions, the intensity differences and ratios for the spectral synthesis codes. We identify that the largest discrepancies originate in the intergranular lanes where the most field concentration occurs. Overall, the applied radiative transfer codes give consistent intensity distributions. Also, the intensity variation as a function of magnetic field strength for the particular 100 G and 200 G snapshots agree within the 2-3% range.
The magnetic network extending from the photosphere (solar radius $simeq R_odot$) to lower corona ($R_odot + 10$ Mm) plays an important role in the heating mechanisms of the solar atmosphere. Here we further develop the models with realistic open mag netic flux tubes of the authors in order to model more complicated configurations. Closed magnetic loops, and combinations of closed and open magnetic flux tubes are modelled. These are embedded within a stratified atmosphere, derived from observationally motivated semi-empirical and data-driven models subject to solar gravity and capable of spanning from the photosphere up into the chromosphere and lower corona. Constructing a magnetic field comprising self-similar magnetic flux tubes, an analytic solution for the kinetic pressure and plasma density is derived. Combining flux tubes of opposite polarity it is possible to create a steady background magnetic field configuration modelling a solar atmosphere exhibiting realistic stratification. The result can be applied to SOHO/MDI and SDO/HMI and other magnetograms from the solar surface, upon which photospheric motions can be simulated to explore the mechanism of energy transport. We demonstrate this powerful and versatile method with an application to Helioseismic and Magnetic Imager data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا