ترغب بنشر مسار تعليمي؟ اضغط هنا

In a model free discrete time financial market, we prove the superhedging duality theorem, where trading is allowed with dynamic and semi-static strategies. We also show that the initial cost of the cheapest portfolio that dominates a contingent clai m on every possible path $omega in Omega$, might be strictly greater than the upper bound of the no-arbitrage prices. We therefore characterize the subset of trajectories on which this duality gap disappears and prove that it is an analytic set.
In a model independent discrete time financial market, we discuss the richness of the family of martingale measures in relation to different notions of Arbitrage, generated by a class $mathcal{S}$ of significant sets, which we call Arbitrage de la cl asse $mathcal{S}$. The choice of $mathcal{S}$ reflects into the intrinsic properties of the class of polar sets of martingale measures. In particular: for S=${Omega}$ absence of Model Independent Arbitrage is equivalent to the existence of a martingale measure; for $mathcal{S}$ being the open sets, absence of Open Arbitrage is equivalent to the existence of full support martingale measures. These results are obtained by adopting a technical filtration enlargement and by constructing a universal aggregator of all arbitrage opportunities. We further introduce the notion of market feasibility and provide its characterization via arbitrage conditions. We conclude providing a dual representation of Open Arbitrage in terms of weakly open sets of probability measures, which highlights the robust nature of this concept.
Evenly convex sets in a topological vector space are defined as the intersection of a family of open half spaces. We introduce a generalization of this concept in the conditional framework and provide a generalized version of the bipolar theorem. Thi s notion is then applied to obtain the dual representation of conditionally evenly quasi-convex maps.
We propose a generalization of the classical notion of the $V@R_{lambda}$ that takes into account not only the probability of the losses, but the balance between such probability and the amount of the loss. This is obtained by defining a new class of law invariant risk measures based on an appropriate family of acceptance sets. The $V@R_{lambda}$ and other known law invariant risk measures turn out to be special cases of our proposal. We further prove the dual representation of Risk Measures on $mathcal{P}(% mathbb{R}).$
In the conditional setting we provide a complete duality between quasiconvex risk measures defined on $L^{0}$ modules of the $L^{p}$ type and the appropriate class of dual functions. This is based on a general result which extends the usual Penot-Vol le representation for quasiconvex real valued maps.
We extend the classical risk minimization model with scalar risk measures to the general case of set-valued risk measures. The problem we obtain is a set-valued optimization model and we propose a goal programming-based approach with satisfaction fun ction to obtain a solution which represents the best compromise between goals and the achievement levels. Numerical examples are provided to illustrate how the method works in practical situations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا