ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a way to break symmetry in stochastic dynamics by introducing a dissipation term. We show in a specific mean-field model, that if the reversible model undergoes a phase transition of ferromagnetic type, then its dissipative counterpart exhibits periodic orbits in the thermodynamic limit.
The temporal statistics exhibited by written correspondence appear to be media dependent, with features which have so far proven difficult to characterize. We explain the origin of these difficulties by disentangling the role of spontaneous activity from decision-based prioritizing processes in human dynamics, clocking all waiting times through each agents `proper time measured by activity. This unveils the same fundamental patterns in written communication across all media (letters, email, sms), with response times displaying truncated power-law behavior and average exponents near -3/2. When standard time is used, the response time probabilities are theoretically predicted to exhibit a bi-modal character, which is empirically borne out by our new years-long data on email. These novel perspectives on the temporal dynamics of human correspondence should aid in the analysis of interaction phenomena in general, including resource management, optimal pricing and routing, information sharing, emergency handling.
We extend the construction by Kuelske and Iacobelli of metastates in finite-state mean-field models in independent disorder to situations where the local disorder terms are are a sample of an external ergodic Markov chain in equilibrium. We show that for non-degenerate Markov chains, the structure of the theorems is analogous to the case of i.i.d. variables when the limiting weights in the metastate are expressed with the aid of a CLT for the occupation time measure of the chain. As a new phenomenon we also show in a Potts example that, for a degenerate non-reversible chain this CLT approximation is not enough and the metastate can have less symmetry than the symmetry of the interaction and a Gaussian approximation of disorder fluctuations would suggest.
We present classes of models in which particles are dropped on an arbitrary fixed finite connected graph, obeying adhesion rules with screening. We prove that there is an invariant distribution for the resulting height profile, and Gaussian concentra tion for functions depending on the paths of the profiles. As a corollary we obtain a law of large numbers for the maximum height. This describes the asymptotic speed with which the maximal height increases. The results incorporate the case of independent particle droppings but extend to droppings according to a driving Markov chain, and to droppings with possible deposition below the top layer up to a fixed finite depth, obeying a non-nullness condition for the screening rule. The proof is based on an analysis of the Markov chain on height-profiles using coupling methods. We construct a finite communicating set of configurations of profiles to which the chain keeps returning.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا