ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlations in quantum systems exhibit a rich phenomenology under the effect of various sources of noise. We investigate theoretically and experimentally the dynamics of quantum correlations and their classical counterparts in two nuclear magnetic r esonance setups, as measured by geometric quantifiers based on trace-norm. We consider two-qubit systems prepared in Bell diagonal states, and perform the experiments in decohering environments resulting from Bell diagonal-preserving Markovian local noise. We then report the first observation of environment-induced double sudden transitions in the geometric quantum correlations, a genuinely nonclassical effect not observable in classical correlations. The evolution of classical correlations in our physical implementation reveals in turn the finite-time relaxation to a pointer basis under nondissipative decoherence, which we characterize geometrically in full analogy with predictions based on entropic measures.
We introduce an approach for quantum computing in continuous time based on the Lewis-Riesenfeld dynamic invariants. This approach allows, under certain conditions, for the design of quantum algorithms running on a nonadiabatic regime. We show that th e relaxation of adiabaticity can be achieved by processing information in the eigenlevels of a time dependent observable, namely, the dynamic invariant operator. Moreover, we derive the conditions for which the computation can be implemented by time independent as well as by adiabatically varying Hamiltonians. We illustrate our results by providing the implementation of both Deutsch-Jozsa and Grover algorithms via dynamic invariants.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا