ﻻ يوجد ملخص باللغة العربية
We introduce an approach for quantum computing in continuous time based on the Lewis-Riesenfeld dynamic invariants. This approach allows, under certain conditions, for the design of quantum algorithms running on a nonadiabatic regime. We show that the relaxation of adiabaticity can be achieved by processing information in the eigenlevels of a time dependent observable, namely, the dynamic invariant operator. Moreover, we derive the conditions for which the computation can be implemented by time independent as well as by adiabatically varying Hamiltonians. We illustrate our results by providing the implementation of both Deutsch-Jozsa and Grover algorithms via dynamic invariants.
Computational methods are the most effective tools we have besides scientific experiments to explore the properties of complex biological systems. Progress is slowing because digital silicon computers have reached their limits in terms of speed. Othe
We study the percolation of a quantum particle on quasicrystal lattices and compare it with the square lattice. For our study, we have considered quasicrystal lattices modelled on the pentagonally symmetric Penrose tiling and the octagonally symmetri
We present universal continuous variable quantum computation (CVQC) in the micromaser. With a brief history as motivation we present the background theory and define universal CVQC. We then show how to generate a set of operations in the micromaser w
Given any quantum error correcting code permitting universal fault-tolerant quantum computation and transversal measurement of logical X and Z, we describe how to perform time-optimal quantum computation, meaning the execution of an arbitrary Cliffor
We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quan