ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a design methodology and analysis of a cavity optomechanical system in which a localized GHz frequency mechanical mode of a nanobeam resonator is evanescently coupled to a high quality factor (Q>10^6) optical mode of a separate nanobeam op tical cavity. Using separate nanobeams provides flexibility, enabling the independent design and optimization of the optics and mechanics of the system. In addition, the small gap (approx. 25 nm) between the two resonators gives rise to a slot mode effect that enables a large zero-point optomechanical coupling strength to be achieved, with g/2pi > 300 kHz in a Si3N4 system at 980 nm and g/2pi approx. 900 kHz in a Si system at 1550 nm. The fact that large coupling strengths to GHz mechanical oscillators can be achieved in SiN is important, as this material has a broad optical transparency window, which allows operation throughout the visible and near-infrared. As an application of this platform, we consider wide-band optical frequency conversion between 1300 nm and 980 nm, using two optical nanobeam cavities coupled on either side to the breathing mode of a mechanical nanobeam resonator.
We demonstrate a spectrally broadband and effcient technique for collecting photoluminescence from a single InAs quantum dot directly into a standard single mode optical fiber. In this approach, an optical fiber taper waveguide is placed in contact w ith a suspended GaAs nanophotonic waveguide with embedded quantum dots, forming an effcient and broadband directional coupler with standard optical fiber input and output. Effcient photoluminescence collection over a wavelength range of tens of nanometers is demonstrated, and a maximum collection effciency of 6.05 % (corresponding single photon rate of 3.0 MHz) into a single mode optical fiber was estimated for a single quantum dot exciton.
We demonstrate a nanostructure composed of partially etched annular trenches in a suspended GaAs membrane, designed for efficient and moderately broadband (approx. 5 nm) emission extraction from single InAs quantum dots. Simulations indicate that a d ipole embedded in the nanostructure center radiates upwards into free space with a nearly Gaussian far-field, allowing a collection efficiency > 80 % with a high numerical aperture (NA=0.7) optic, and with 12X Purcell radiative rate enhancement. Fabricated devices exhibit an approx. 10 % photon collection efficiency with a NA=0.42 objective, a 20X improvement over quantum dots in unpatterned GaAs. A fourfold exciton lifetime reduction indicates moderate Purcell enhancement.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا