ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper presents the richness of submillimeter spectral features in the high-mass star forming region AFGL 2591. As part of the CHESS (Chemical Herschel Survey of Star Forming Regions) Key Programme, AFGL 2591 was observed by the Herschel/HIFI ins trument. The spectral survey covered a frequency range from 480 up to 1240 GHz as well as single lines from 1267 to 1901 GHz (i.e. CO, HCl, NH3, OH and [CII]). Rotational and population diagram methods were used to calculate column densities, excitation temperatures and the emission extents of the observed molecules associated with AFGL 2591. The analysis was supplemented with several lines from ground-based JCMT spectra. From the HIFI spectral survey analysis a total of 32 species were identified (including isotopologues). In spite of the fact that lines are mostly quite week, 268 emission and 16 absorption lines were found (excluding blends). Molecular column densities range from 6e11 to 1e19 cm-2 and excitation temperatures range from 19 to 175 K. One can distinguish cold (e.g. HCN, H2S, NH3 with temperatures below 70 K) and warm species (e.g. CH3OH, SO2) in the protostellar envelope.
In this paper, we present new data with interstellar C2 (Phillips bands A-X), from observations made with the Ultraviolet-Visual Echelle Spectrograph of the European Southern Observatory. We have determined the interstellar column densities and excit ation temperatures of C2 for nine Galactic lines. For seven of these, C2 has never been observed before, so in this case the still small sample of interstellar clouds (26 lines of sight), where a detailed analysis of C2 excitation has been made, has increased significantly. This paper is a continuation of previous works where interstellar molecules (C2 and diffuse interstellar bands) have been analysed. Because the sample of interstellar clouds with C2 has increased, we can show that the width and shape of the profiles of some diffuse interstellar bands (6196 and 5797 A) apparently depend on the gas kinetic and rotational temperatures of C2; the profiles are broader because of the higher values of the gas kinetic and rotational temperatures of C2. There are also diffuse interstellar bands (4964 and 5850 A) for which this effect does not exist.
This paper presents a finding of the correlation between the width of a strong diffuse interstellar band at 6196A and the excitation temperature of C2 based on high resolution and high signal-to-noise ratio spectra. The excitation temperature was det ermined from absorption lines of the Phillips A-X and Mulliken D-X systems. The width and shape of the narrow 6196A DIB profile apparently depend on the C2 temperature, being broader for higher values.
Using high-resolution (~85000) and high signal-to-noise ratio (~200) optical spectra acquired with the European Southern Observatory Ultraviolet and Visual Echelle Spectrograph, we have determined the interstellar column densities of C2 for six Galac tic lines of sight with E(B- V) ranging from 0.33 to 1.03. For our purposes, we identified and measured absorption lines belonging to the (1, 0), (2, 0) and (3, 0) Phillips bands A1{Pi}u-X1{Sigma}+g. We report on the identification of a few lines of the C2 (4, 0) Phillips system towards HD 147889. The curve-of-growth method is applied to the equivalent widths to determine the column densities of the individual rotational levels of C2. The excitation temperature is extracted from the rotational diagrams. The physical parameters of the intervening molecular clouds (e.g. gas kinetic temperatures and densities of collision partners) were estimated by comparison with the theoretical model of excitation of C2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا