ترغب بنشر مسار تعليمي؟ اضغط هنا

Using two experimental techniques, we studied single crystals of the 122-FeAs family with almost the same critical temperature, Tc. We investigated the temperature dependence of the lower critical field of a single crystal under static magnetic field s parallel to the axis. The temperature dependence of the London penetration depth can be described equally well either by a single anisotropic -wave-like gap or by a two-gap model, while a d-wave approach cannot be used to fit the London penetration depth data. Intrinsic multiple Andreev reflection effect spectroscopy was used to detect bulk gap values in single crystals of the intimate compound, with the same Tc. We estimated the range of the large gap value 6-8 meV (depending on small variation of and its a space anisotropy of about 30%, and the small gap 1.7 meV. This clearly indicates that the gap structure of our investigated systems more likely corresponds to a nodeless s-wave two gaps.
We present a calorimetric study on single crystals of Ca(Fe1-xCox)2As2 (x = 0, 0.032, 0.051, 0.056, 0.063, and 0.146). The combined first order spin-density wave/structural transition occurs in the parent CaFe2As2 compound at 168 K and gradually shif ts to lower temperature for low doping levels (x = 0.032 and x = 0.051). It is completely suppressed upon higher doping x = 0.056. Simultaneously, superconductivity appears at lower temperature with a transition temperature around Tc = 14.1 K for Ca(Fe0.937Co0.063)2As2. The phase diagram of Ca(Fe0.937Co0.063)2As2 has been derived and the upper critical field is found to be H(c) c2 = 11.5
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا