ترغب بنشر مسار تعليمي؟ اضغط هنا

The origins of indirect spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique wh ich produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized $textit{d}$-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a $sigmapi-d$ exchange analogous to $textit{sp-d}$ interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified $textit{g}$-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.
The lack of long range order in organic semiconductor thin films prevents the unveiling of the complete nature of excitons in optical experiments, because the diffraction limited beam diameters in the bandgap region far exceed typical crystalline gra in sizes. Here we present spatially-, temporally- and polarization-resolved dual photoluminescence/linear dichroism microscopy experiments that investigate exciton states within a single crystalline grain in solution-processed phthalocyanine thin films. These experiments reveal the existence of a delocalized singlet exciton, polarized along the high mobility axis in this quasi-1D electronic system. The strong delocalized {pi} orbitals overlap controlled by the molecular stacking along the high mobility axis is responsible for breaking the radiative recombination selection rules. Using our linear dichroism scanning microscopy setup we further established a rotation of molecules (i.e. a structural phase transition) that occurs above 100 K prevents the observation of this exciton at room temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا