ترغب بنشر مسار تعليمي؟ اضغط هنا

Indirect Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films

112   0   0.0 ( 0 )
 نشر من قبل Madalina Furis
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origins of indirect spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized $textit{d}$-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a $sigmapi-d$ exchange analogous to $textit{sp-d}$ interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified $textit{g}$-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.



قيم البحث

اقرأ أيضاً

The lack of long range order in organic semiconductor thin films prevents the unveiling of the complete nature of excitons in optical experiments, because the diffraction limited beam diameters in the bandgap region far exceed typical crystalline gra in sizes. Here we present spatially-, temporally- and polarization-resolved dual photoluminescence/linear dichroism microscopy experiments that investigate exciton states within a single crystalline grain in solution-processed phthalocyanine thin films. These experiments reveal the existence of a delocalized singlet exciton, polarized along the high mobility axis in this quasi-1D electronic system. The strong delocalized {pi} orbitals overlap controlled by the molecular stacking along the high mobility axis is responsible for breaking the radiative recombination selection rules. Using our linear dichroism scanning microscopy setup we further established a rotation of molecules (i.e. a structural phase transition) that occurs above 100 K prevents the observation of this exciton at room temperature.
352 - P. Sati , C. Deparis , C. Morhain 2007
In a rather contradictory situation regarding magnetic data on Co-doped ZnO, we have succeeded in fabricating high-quality single crystalline Zn1-xCoxO (x=0.003-0.07) thin films. This gives us the possibility, for the first time, to examine the it in trinsic magnetic properties of ZnO:Co at a quantitative level and therefore to address several unsolved problems, the major one being the nature of the Co-Co interaction in the ZnO structure.
108 - Ruofan Li , Peng Li , Di Yi 2021
We report measurements of magnon spin transport in a spinel ferrite, magnesium aluminum ferrite $mathrm{MgAl_{0.5}Fe_{1.5}O_4}$ (MAFO), which has a substantial in-plane four-fold magnetic anisotropy. We observe spin diffusion lengths $> 0.8$ $mathrm{ mu m}$ at room temperature in 6 nm films, with spin diffusion length 30% longer along the easy axes compared to the hard axes. The sign of this difference is opposite to the effects just of anisotropy in the magnetic energy for a uniform magnetic state. We suggest instead that accounting for anisotropy in exchange stiffness is necessary to explain these results.
Copper ferrite thin films were rf sputtered at a power of 50W. The as deposited films were annealed in air at 800{deg}C and slow cooled. The transmission electron microscope (TEM) studies were carried out on as deposited as well as on slow cooled fil m. Significantly larger defect concentration, including stacking faults, was observed in 50W as deposited films than the films deposited at a higher rf power of 200W. The film annealed at 800{deg}C and then slow cooled showed an unusual grain growth upto 180nm for a film thickness of ~240nm. These grains showed Kikuchi pattern.
We present an electrochemical route for the integration of graphene with light sensitive copper-based alloys used in optoelectronic applications. Graphene grown using chemical vapor deposition (CVD) transferred to glass is found to be a robust substr ate on which photoconductive Cu_{x}S films of 1-2 um thickness can be deposited. The effect of growth parameters on the morphology and photoconductivity of Cu_{x}S films is presented. Current-voltage characterization and photoconductivity decay experiments are performed with graphene as one contact and silver epoxy as the other.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا