ترغب بنشر مسار تعليمي؟ اضغط هنا

A rare group of high mass X-ray binaries (HMXBs) are known that also exhibit MeV, GeV, and/or TeV emission (gamma-ray binaries). Expanding the sample of gamma-ray binaries and identifying unknown Fermi sources are currently of great interest to the c ommunity. Based upon their positional coincidence with the unidentified Fermi sources 1FGL J1127.7-6244c and 1FGL J1808.5-1954c, the Be stars HD 99771 and HD 165783 have been proposed as gamma-ray binary candidates. During Fermi Cycle 4, we have performed multiwavelength observations of these sources using XMM-Newton and the CTIO 1.5m telescope. We do not confirm high energy emission from the Be stars. Here we examine other X-ray sources in the field of view that are potential counterparts to the Fermi sources.
The recently discovered gamma-ray binary 1FGL J1018.6-5856 has a proposed optical/near-infrared (OIR) counterpart 2MASS 10185560-5856459. We present Stromgren photometry of this star to investigate its photometric variability and measure the reddenin g and distance to the system. We find that the gamma-ray binary has E(B-V) = 1.34 +/- 0.04 and d = 5.4^+4.6_-2.1 kpc. While E(B-V) is consistent with X-ray observations of the neutral hydrogen column density, the distance is somewhat closer than some previous authors have suggested.
LS I +61 303 and LS 5039 are exceptionally rare examples of HMXBs with MeV-TeV emission, making them two of only five known or proposed gamma-ray binaries. There has been disagreement within the literature over whether these systems are microquasars, with stellar winds accreting onto a compact object to produce high energy emission and relativistic jets, or whether their emission properties might be better explained by a relativistic pulsar wind colliding with the stellar wind. Here we present an attempt to detect radio pulsars in both systems with the Green Bank Telescope. The upper limits of flux density are between 4.1-14.5 uJy, and we discuss the null results of the search. Our spherically symmetric model of the wind of LS 5039 demonstrates that any pulsar emission will be strongly absorbed by the dense wind unless there is an evacuated region formed by a relativistic colliding wind shock. LS I +61 303 contains a rapidly rotating Be star whose wind is concentrated near the stellar equator. As long as the pulsar is not eclipsed by the circumstellar disk or viewed through the densest wind regions, detecting pulsed emission may be possible during part of the orbit.
HD 259440 is a B0pe star that was proposed as the optical counterpart to the gamma-ray source HESS J0632+057. Here we present optical spectra of HD 259440 acquired to investigate the stellar parameters, the properties of the Be star disk, and evidenc e of binarity in this system. Emission from the H-alpha line shows evidence of a spiral density wave in the nearly edge-on disk. We find a best fit stellar effective temperature of 27500-30000 K and a log surface gravity of 3.75-4.0, although our fits are somewhat ambiguous due to scattered light from the circumstellar disk. We derive a mass of 13.2-19.0 M_sun and a radius of 6.0-9.6 R_sun. By fitting the spectral energy distribution, we find a distance between 1.1-1.7 kpc. We do not detect any significant radial velocity shifts in our data, ruling out orbital periods shorter than one month. If HD 259440 is a binary, it is likely a long period (> 100 d) system.
HD 15137 is an intriguing runaway O-type binary system that offers a rare opportunity to explore the mechanism by which it was ejected from the open cluster of its birth. Here we present recent blue optical spectra of HD 15137 and derive a new orbita l solution for the spectroscopic binary and physical parameters of the O star primary. We also present the first XMM-Newton observations of the system. Fits of the EPIC spectra indicate soft, thermal X-ray emission consistent with an isolated O star. Upper limits on the undetected hard X-ray emission place limits on the emission from a proposed compact companion in the system, and we rule out a quiescent neutron star in the propellor regime or a weakly accreting neutron star. An unevolved secondary companion is also not detected in our optical spectra of the binary, and it is difficult to conclude that a gravitational interaction could have ejected this runaway binary with a low mass optical star. HD 15137 may contain an elusive neutron star in the ejector regime or a quiescent black hole with conditions unfavorable for accretion at the time of our observations.
Non-radial pulsations (NRPs) are a proposed mechanism for the formation of decretion disks around Be stars and are important tools to study the internal structure of stars. NGC 3766 has an unusually large fraction of transient Be stars, so it is an e xcellent location to study the formation mechanism of Be star disks. High resolution spectroscopy can reveal line profile variations from NRPs, allowing measurements of both the degree, l, and azimuthal order, m. However, spectroscopic studies require large amounts of time with large telescopes to achieve the necessary high S/N and time domain coverage. On the other hand, multi-color photometry can be performed more easily with small telescopes to measure l only. Here, we present representative light curves of Be stars and non-emitting B stars in NGC 3766 from the CTIO 0.9m telescope in an effort to study NRPs in this cluster.
We present blue optical spectra of 92 members of h and chi Per obtained with the WIYN telescope at Kitt Peak National Observatory. From these spectra, several stellar parameters were measured for the B-type stars, including V sin i, T_eff, log g_pola r, M_star, and R_star. Stromgren photometry was used to measure T_eff and log g_polar for the Be stars. We also analyze photometric data of cluster members and discuss the near-to-mid IR excesses of Be stars.
A growing number of observations indicate that magnetic fields are present among a small fraction of massive O- and B-type stars, yet the origin of these fields remains unclear. Here we present the results of a VLT/FORS1 spectropolarimetric survey of 15 B-type members of the open cluster NGC 3766. We have detected two magnetic B stars in the cluster, including one with a large field of nearly 2 kG, and we find marginal detections of two additional stars. There is no correlation between the observed longitudinal field strengths and the projected rotational velocity, suggesting that a dynamo origin for the fields is unlikely. We also use the Oblique Dipole Rotator model to simulate populations of magnetic stars with uniform or slightly varying magnetic flux on the ZAMS. None of the models successfully reproduces our observed range in B_l and the expected number of field detections, and we rule out a purely fossil origin for the observed fields.
We present multiple epochs of H-alpha spectroscopy for 47 members of the open cluster NGC 3766 to investigate the long term variability of its Be stars. Sixteen of the stars in this sample are Be stars, including one new discovery. Of these, we obser ve an unprecedented 11 Be stars that undergo disk appearances and/or near disappearances in our H-alpha spectra, making this the most variable population of Be stars known to date. NGC 3766 is therefore an excellent location to study the formation mechanism of Be star disks. From blue optical spectra of 38 cluster members and existing Stromgren photometry of the cluster, we also measure rotational velocities, effective temperatures, and polar surface gravities to investigate the physical and evolutionary factors that may contribute to the Be phenomenon. Our analysis also provides improvements to the reddening and distance of NGC 3766, and we find E(B-V) = 0.22 +/- 0.03 and (V-M_V)_0 = 11.6 +/- 0.2, respectively. The Be stars are not associated with a particular stage of main-sequence evolution, but they are a population of rapidly rotating stars with a velocity distribution generally consistent with rotation at 70-80% of the critical velocity, although systematic effects probably underestimate the true rotational velocities so that the rotation is much closer to critical. Our measurements of the changing disk sizes are consistent with the idea that transitory, nonradial pulsations contribute to the formation of these highly variable disks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا