ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Magnetic Massive Stars in the Open Cluster NGC 3766

118   0   0.0 ( 0 )
 نشر من قبل M. Virginia McSwain
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A growing number of observations indicate that magnetic fields are present among a small fraction of massive O- and B-type stars, yet the origin of these fields remains unclear. Here we present the results of a VLT/FORS1 spectropolarimetric survey of 15 B-type members of the open cluster NGC 3766. We have detected two magnetic B stars in the cluster, including one with a large field of nearly 2 kG, and we find marginal detections of two additional stars. There is no correlation between the observed longitudinal field strengths and the projected rotational velocity, suggesting that a dynamo origin for the fields is unlikely. We also use the Oblique Dipole Rotator model to simulate populations of magnetic stars with uniform or slightly varying magnetic flux on the ZAMS. None of the models successfully reproduces our observed range in B_l and the expected number of field detections, and we rule out a purely fossil origin for the observed fields.



قيم البحث

اقرأ أيضاً

Non-radial pulsations (NRPs) are a proposed mechanism for the formation of decretion disks around Be stars and are important tools to study the internal structure of stars. NGC 3766 has an unusually large fraction of transient Be stars, so it is an e xcellent location to study the formation mechanism of Be star disks. High resolution spectroscopy can reveal line profile variations from NRPs, allowing measurements of both the degree, l, and azimuthal order, m. However, spectroscopic studies require large amounts of time with large telescopes to achieve the necessary high S/N and time domain coverage. On the other hand, multi-color photometry can be performed more easily with small telescopes to measure l only. Here, we present representative light curves of Be stars and non-emitting B stars in NGC 3766 from the CTIO 0.9m telescope in an effort to study NRPs in this cluster.
Relative proper motions and cluster membership probabilities have been derived for ~ 2500 stars in the field of the open star cluster NGC 3766. The cluster has been observed in $B$ and $V$ broadband filters at two epochs separated by ~ 6 years using a wide-field imager mounted on the [email protected] telescope. All CCD frames were reduced using the astrometric techniques described in Anderson et al. (2006). The proper motion r.m.s. error for stars brighter than $V$ ~ 15 mag is 2.0 mas/yr but it gradually increases up to ~4 mas/yr at $V$ ~20 mag. Using proper motion data, membership probabilities have been derived for the stars in the region of the cluster. They indicate that three Be and one Ap stars are member of the cluster. The reddening $E(B-V)=0.22pm0.05$ mag, a distance 2.5$pm$0.5 kpc and an age of ~ 20 Myr are derived using stars of $P_{mu}>70%$. Mass function slope $x=1.60pm0.10$ is derived for the cluster and cluster was found to be dynamically relaxed. Finally, we provide positions, calibrated $B$ and $V$ magnitudes, relative proper motions and membership probabilities for the stars in the field of NGC 3766. We have produced a catalog that is electronically available to the astronomical community.
We present results of a search for variable stars in the intermediate-age open cluster NGC 7044. We found 23 variable stars in the observed field. One star turned out to be of the delta Sct type with two pulsational modes excited. From the position i n the color-magnitude diagram we conclude that this star is a member of the cluster. Moreover, we found 13 eclipsing systems, of which five are W UMa stars, one is a beta Lyr variable, six are beta Per binaries showing detached configuration, and the last one is another probable beta Per system. Using the period-luminosity-color relation for W UMa stars we established the membership of the contact binaries, finding four of them to be very probable cluster members. We estimated from these four stars an apparent distance modulus (m-M)_V of NGC 7044 to be 14.2 +/- 0.4 mag, which is smaller than previous determinations of this parameter. We were able to derive orbital period for only four beta Per systems. For the remaining ones we observed only two or three eclipses. Finally, nine stars we found to show irregular light changes. Most of them are red stars not belonging to the cluster. For the cluster core we determined a reddening map, which allowed us to construct a dereddened color-magnitude diagram of NGC 7044 with a narrow main-sequence. By fitting a theoretical isochrone to this diagram we derived E(V-I_C) = 0.92 mag, (m-M)_V = 14.45 mag and log(age/yr) = 9.2.
238 - Yangping Luo 2014
We report the results of a search for variable stars in the open cluster NGC 2141. Ten variable stars are detected, among which nine are new variable stars and they are classified as three short period W UMa type eclipsing binaries, two EA type eclip sing binaries, one EB type eclipsing binary, one very short period RS CVn type eclipsing binary, one d type RR Lyrae variable star, and one unknown type variable star. The membership and physical properties are discussed, based on their light curves, positions in the CMDs, spatial locations and periods. A known EB type eclipsing binary is also identified as a blue struggler candidate of the cluster. Furthermore, we find that all eclipsing contact binaries have prominently asymmetric eclipses and O Connell effect (O Connell 1951) which increases with the decrease of the orbital periods. This suggests that the O Connell effect is probably related to the evolution of the orbital period in short period eclipsing binary systems.
259 - J.-R. Koo , S.-L. Kim , S.-C. Rey 2007
V-band time-series CCD photometric observations of the intermediate-age open cluster M11 were performed to search for variable stars. Using these time-series data, we carefully examined light variations of all stars in the observing field. A total of 82 variable stars were discovered, of which 39 stars had been detected recently by Hargis et al. (2005). On the basis of observational properties such as variable period, light curve shape, and position on a color-magnitude diagram, we classified their variable types as 11 delta Scuti-type pulsating stars, 2 gamma Doradus-type pulsating stars, 40 W UMa-type contact eclipsing binaries, 13 Algol-type detached eclipsing binaries, and 16 eclipsing binaries with long period. Cluster membership for each variable star was deduced from the previous proper motion results (McNamara et al. 1977) and position on the color-magnitude diagram. Many pulsating stars and eclipsing binaries in the region of M11 are probable members of the cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا