ترغب بنشر مسار تعليمي؟ اضغط هنا

Following the experimental realization of Dicke superradiance in Bose gases coupled to cavity light fields, we investigate the behavior of ultra cold fermions in a transversely pumped cavity. We focus on the equilibrium phase diagram of spinless ferm ions coupled to a single cavity mode and establish a zero temperature transition to a superradiant state. In contrast to the bosonic case, Pauli blocking leads to lattice commensuration effects that influence self-organization in the cavity light field. This includes a sequence of discontinuous transitions with increasing atomic density and tricritical superradiance. We discuss the implications for experiment.
We explore the zero-temperature phase diagram of bosons interacting via Feshbach resonant pairing interactions in one dimension. Using DMRG (Density Matrix Renormalization Group) and field theory techniques we characterize the phases and quantum phas e transitions in this low-dimensional setting. We provide a broad range of evidence in support of an Ising quantum phase transition separating distinct paired superfluids, including results for the energy gaps, correlation functions and entanglement entropy. In particular, we show that the Ising correlation length, order parameter and critical properties are directly accessible from a ratio of the atomic and molecular two-point functions. We further demonstrate that both the zero-momentum occupation numbers and the visibility are in accordance with the absence of a purely atomic superfluid phase. We comment on the connection to recent studies of boson pairing in a generalized classical XY model.
Motivated by experiments observing self-organization of cold atoms in optical cavities we investigate the collective dynamics of the associated nonequilibrium Dicke model. The model displays a rich semiclassical phase diagram of long time attractors including distinct superradiant fixed points, bistable and multistable coexistence phases and regimes of persistent oscillations. We explore the intrinsic timescales for reaching these asymptotic states and discuss the implications for finite duration experiments. On the basis of a semiclassical analysis of the effective Dicke model we find that sweep measurements over 200ms may be required in order to access the asymptotic regime. We briefly comment on the corrections that may arise due to quantum fluctuations and states outside of the effective two-level Dicke model description.
We explore the Mott insulating state of single-band bosonic pairing Hamiltonians using analytical approaches and large scale density matrix renormalization group calculations. We focus on the second Mott lobe which exhibits a magnetic quantum phase t ransition in the Ising universality class. We use this feature to discuss the behavior of a range of physical observables within the framework of the 1D quantum Ising model and the strongly anisotropic Heisenberg model. This includes the properties of local expectation values and correlation functions both at and away from criticality. Depending on the microscopic interactions it is possible to achieve either antiferromagnetic or ferromagnetic exchange interactions and we highlight the possibility of observing the E8 mass spectrum for the critical Ising model in a longitudinal magnetic field.
Recent experiments on Bose--Einstein condensates in optical cavities have reported a quantum phase transition to a coherent state of the matter-light system -- superradiance. The time dependent nature of these experiments demands consideration of col lective dynamics. Here we establish a rich phase diagram, accessible by quench experiments, with distinct regimes of dynamics separated by non-equilibrium phase transitions. We include the key effects of cavity leakage and the back-reaction of the cavity field on the condensate. Proximity to some of these phase boundaries results in critical slowing down of the decay of many-body oscillations. Notably, this slow decay can be assisted by large cavity losses. Predictions include the frequency of collective oscillations, a variety of multi-phase co-existence regions, and persistent optomechanical oscillations described by a damped driven pendulum. These findings open new directions to study collective dynamics and non-equilibrium phase transitions in matter-light systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا