ترغب بنشر مسار تعليمي؟ اضغط هنا

In this note we provide explicit expressions and expansions for a special function which appears in nonparametric estimation of log-densities. This function returns the integral of a log-linear function on a simplex of arbitrary dimension. In particu lar it is used in the R-package LogCondDEAD by Cule et al. (2007).
We present a general law of the iterated logarithm for stochastic processes on the open unit interval having subexponential tails in a locally uniform fashion. It applies to standard Brownian bridge but also to suitably standardized empirical distrib ution functions. This leads to new goodness-of-fit tests and confidence bands which refine the procedures of Berk and Jones (1979) and Owen (1995). Roughly speaking, the high power and accuracy of the latter procedures in the tail regions of distributions are essentially preserved while gaining considerably in the central region.
This paper introduces and analyzes a stochastic search method for parameter estimation in linear regression models in the spirit of Beran and Millar (1987). The idea is to generate a random finite subset of a parameter space which will automatically contain points which are very close to an unknown true parameter. The motivation for this procedure comes from recent work of Duembgen, Samworth and Schuhmacher (2011) on regression models with log-concave error distributions.
In this paper we show that the family P_d of probability distributions on R^d with log-concave densities satisfies a strong continuity condition. In particular, it turns out that weak convergence within this family entails (i) convergence in total va riation distance, (ii) convergence of arbitrary moments, and (iii) pointwise convergence of Laplace transforms. Hence the nonparametric model P_d has similar properties as parametric models such as, for instance, the family of all d-variate Gaussian distributions.
We study nonparametric maximum likelihood estimation of a log-concave probability density and its distribution and hazard function. Some general properties of these estimators are derived from two characterizations. It is shown that the rate of conve rgence with respect to supremum norm on a compact interval for the density and hazard rate estimator is at least $(log(n)/n)^{1/3}$ and typically $(log(n)/n)^{2/5}$, whereas the difference between the empirical and estimated distribution function vanishes with rate $o_{mathrm{p}}(n^{-1/2})$ under certain regularity assumptions.
We introduce a multiscale test statistic based on local order statistics and spacings that provides simultaneous confidence statements for the existence and location of local increases and decreases of a density or a failure rate. The procedure provi des guaranteed finite-sample significance levels, is easy to implement and possesses certain asymptotic optimality and adaptivity properties.
Benfords law states that for many random variables X > 0 its leading digit D = D(X) satisfies approximately the equation P(D = d) = log_{10}(1 + 1/d) for d = 1,2,...,9. This phenomenon follows from another, maybe more intuitive fact, applied to Y := log_{10}(X): For many real random variables Y, the remainder U := Y - floor(Y) is approximately uniformly distributed on [0,1). The present paper provides new explicit bounds for the latter approximation in terms of the total variation of the density of Y or some derivative of it. These bounds are an interesting alternative to traditional Fourier methods which yield mostly qualitative results. As a by-product we obtain explicit bounds for the approximation error in Benfords law.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا