ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first evidence that Oosterhoff type II globular clusters exist in the Andromeda galaxy (M31). On the basis of time-series photometry of the moderately metal-poor ([Fe/H]sim -1.6 dex) M31 globular cluster G11, obtained with the Wide Fie ld Planetary Camera 2 on board the Hubble Space Telescope, we detected and derived periods for 14 RR Lyrae stars, of which five are found to lie inside the cluster tidal radius. They include three fundamental-mode (RRab) and two first-overtone (RRc) pulsators, with average periods <Pab> = 0.70 d, and <Pc> = 0.40 d, respectively. These mean periods and the position of the cluster variable stars in the period-amplitude and period-metallicity diagrams, all suggest that G11 is likely to be an Oosterhoff type II globular cluster. This appears to be in agreement with the general behavior of Milky Way globular clusters with similar metallicity and horizontal branch morphology.
162 - Luciana Federici 2012
Thanks to the outstanding capabilites of the HST, our current knowledge about the M31 globular clusters (GCs) is similar to our knowledge of the Milky Way GCs in the 1960s-1970s, which set the basis for studying the halo and galaxy formation using th ese objects as tracers, and established their importance in defining the cosmic distance scale. We intend to derive a new calibration of the M_V(HB)-[Fe/H] relation by exploiting the large photometric database of old GCs in M31 in the HST archive. We collected the BVI data for 48 old GCs in M31 and analysed them by applying the same methods and procedures to all objects. We obtained a set of homogeneous colour-magnitude diagrams (CMDs) that were best-fitted with the fiducial CMD ridge lines of selected Milky Way template GCs. Reddening, metallicity, Horizontal Branch (HB) luminosity and distance were determined self-consistently for each cluster. There are three main results of this study: i) the relation M_V(HB)=(0.25+/-0.02)[Fe/H]+(0.89+/-0.03), which is obtained from the above parameters and is calibrated on the distances of the template Galactic GCs; ii) the distance modulus to M31 of (m-M)_0=24.42+/-0.06 mag, obtained by normalising this relation at the reference value of [Fe/H]=-1.5 to a similar relation using V_0(HB). This is the first determination of the distance to M31 based on the characteristics of its GC system which is calibrated on Galactic GCs; iii) the distance to the Large Magellanic Cloud (LMC), which is estimated to be 18.54+/-0.07 mag as a consequence of the previous results. These values agree excellently with the most recent estimate based on HST parallaxes of Galactic Cepheid and RR Lyrae stars, as well as with recent methods.
Photometry in B, V (down to V ~ 26 mag) is presented for two 23 x 23 fields of the Andromeda galaxy (M31) that were observed with the blue channel camera of the Large Binocular Telescope during the Science Demonstration Time. Each field covers an are a of about 5.1kpc x 5.1kpc at the distance of M31 ((m-M)o ~ 24.4 mag), sampling, respectively, a northeast region close to the M31 giant stream (field S2), and an eastern portion of the halo in the direction of the galaxy minor axis (field H1). The stream field spans a region that includes Andromedas disk and the giant stream, and this is reflected in the complexity of the color magnitude diagram of the field. One corner of the halo field also includes a portion of the giant stream. Even though these demonstration time data were obtained under non-optimal observing conditions the B photometry, acquired in time-series mode, allowed us to identify 274 variable stars (among which 96 are bona fide and 31 are candidate RR Lyrae stars, 71 are Cepheids, and 16 are binary systems) by applying the image subtraction technique to selected portions of the observed fields. Differential flux light curves were obtained for the vast majority of these variables. Our sample includes mainly pulsating stars which populate the instability strip from the Classical Cepheids down to the RR Lyrae stars, thus tracing the different stellar generations in these regions of M31 down to the horizontal branch of the oldest (t ~ 10 Gyr) component.
82 - Sibilla Perina 2009
With the aim of increasing the sample of M31 clusters for which a colour magnitude diagram is available, we searched the HST archive for ACS images containing objects included in the Revised Bologna Catalogue of M31 globular clusters. Sixty-three suc h objects were found. We used the ACS images to confirm or revise their classification and we obtained useful CMDs for 11 old globular clusters and 6 luminous young clusters. We obtained simultaneous estimates of the distance, reddening, and metallicity of old clusters by comparing their observed field-decontaminated CMDs with a grid of template clusters of the Milky Way. We estimated the age of the young clusters by fitting with theoretical isochrones. For the old clusters, we found metallicities in the range -0.4<=[Fe/H]<=-1.9, that generally agree with existing spectroscopic extimates. At least four of them display a clear blue HB, indicating ages >10 Gyr. All six candidate young clusters are found to have ages <1Gyr. With the present work the total number of M31 GCs with reliable optical CMD increases from 35 to 44 for the old clusters, and from 7 to 11 for the young ones. The old clusters show similar characteristics to those of the MW. We discuss the case of the cluster B407, with a metallicity [Fe/H] ~-0.6 and located at a large projected distance from the centre of M31 and from the galaxy major axis. Metal-rich globulars at large galactocentric distances are rare both in M31 and in the MW. B407, in addition, has a velocity in stark contrast with the rotation pattern shared by the bulk of M31 clusters of similar metallicity. This, along with other empirical evidence, supports the hypothesis that the cluster is physically associated with a substructure in the M31 halo that has been interpreted as the relic of a merging event.
We present a study of the density profile of the remote M31 globular cluster B514, obtained from HST/ACS observations. Coupling the analysis of the distribution of the integrated light with star counts we can reliably follow the profile of the cluste r out to r~35, corresponding to ~130pc. The profile is well fitted, out to ~15 core radii, by a King Model having C=1.65. With an estimated core radius r_c=0.38, this corresponds to a tidal radius of r_t~17 (~65pc). We find that both the light and the star counts profiles show a departure from the best fit King model for r>~8 - as a surface brightness excess at large radii, and the star counts profile shows a clear break in correspondence of the estimated tidal radius. Both features are interpreted as the signature of the presence of extratidal stars around the cluster. We also show that B514 has a half-light radius significantly larger than ordinary globular clusters of the same luminosity. In the M_V vs. log r_h plane, B514 lies in a region inhabited by peculiar clusters, like Omega Cen, G1, NGC2419 and others, as well as by the nuclei of dwarf elliptical galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا