ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the Herschel Gould Belt survey (HGBS) of ChaII, focusing on the detection of Class I to III young stellar objects (YSOs). We aim at characterizing the circumstellar material around these YSOs and understanding which disk parameters are m ost likely constrained by the new HGBS data. We recovered 29 out of the 63 known YSOs in ChaII with a detection in at least one of the PACS/SPIRE pass-bands: 3 Class I YSOs (i.e.,100%), 1 Flat source (i.e., 50%), 21 Class II objects (i.e., 55%), 3 Class III objects (i.e, 16%) and the unclassified source IRAS 12522-7640. We explore PACS/SPIRE colors of this sample and present modeling of their SEDs using the RADMC-2D radiative transfer code. We find that YSO colors are confined in specific regions of PACS/SPIRE color-color diagrams. These color ranges are expected to be only marginally contaminated by extragalactic sources and field stars and, hence, provide a useful YSO selection tool when applied altogether. We were able to model the SED of 26 out of the 29 detected YSOs. We discuss the degeneracy/limitations of our SED fitting results and adopt the Bayesian method to estimate the probability of different values for the derived disk parameters. The Cha II YSOs present typical disk inner radii around 0.1 AU. The lower limit to Rc is typically around 50 AU. The lower limits to Mdisk are proportional to the stellar masses with a typical 0.3% ratio, i.e., in the range estimated in the literature for young Class II stars and brown dwarfs across a broad range of stellar masses. The estimated flaring angles, although very uncertain, point towards rather flat disks (1+phi less than 1.2), as found for low-mass M-type YSO samples in other star forming regions. Thus, our results support the idea that disk properties show a dependence on stellar properties.
We searched for isolated planetary-mass T-dwarfs in the 3Myr old Serpens Core cluster. We performed a deep imaging survey of the central part of this cluster using the WIRCam camera at the CFHT. Observations were performed through the narrow-band CH4 _off and CH4_on filters, to identify young T-dwarfs from their 1.6micr methane absorption bands, and the broad-band JHK filters, to better characterize the selected candidates. We complemented our WIRCam photometry with optical imaging data from MegaCam at CFHT and Suprime-Cam at the Subaru telescope and mid-IR flux measurements from the Spitzer c2d Legacy Survey. We report four faint T-dwarf candidates in the direction of the Serpens Core with CH4_on-CH4_off above 0.2 mag, estimated visual extinction in the range 1-9 mag and spectral type in the range T1-T5 based on their dereddened CH4_on-CH4_off colors. Comparisons with T-dwarf spectral models and optical to mid-IR color-color and color-magnitude diagrams, indicate that two of our candidates (ID1 and 2) are background contaminants (most likely heavily reddened low-redshift quasars). The properties of the other two candidates (ID3 and 4) are consistent with them being young members of the Serpens Core cluster, although our analysis can not be considered conclusive. In particular, ID3 may also be a foreground T-dwarf. It is detected by the Spitzer c2d survey but only flux upper limits are available above 5.8 microns and, hence, we can not assess the presence of a possible disk around this object. However, it presents some similarities with other young T-dwarf candidates (SOri70 in the Sigma Ori cluster and CFHTJ0344+3206 in the direction of IC348). If ID3 and 4 belong to Serpens, they would have a mass of a few Jupiter masses and would be amongst the youngest, lowest mass objects detected in a star-forming region so far.
We present a multi-wavelength study of three star forming regions, spanning the age range 1-14 Myr, located between the 30 Doradus complex and supernova SN1987A in the Large Magellanic Cloud (LMC). We reliably identify about 1000 pre-main sequence (P MS) star candidates actively undergoing mass accretion and estimate their stellar properties and mass accretion rate (Macc). Our measurements represent the largest Macc dataset of low-metallicity stars presented so far. As such, they offer a unique opportunity to study on a statistical basis the mass accretion process in the LMC and, more in general, the evolution of the mass accretion process around low-metallicity stars. We find that the typical dot{M} of PMS stars in the LMC is higher than for galactic PMS stars of the same mass, independently of their age. Taking into account the caveats of isochronal age and dot{M} estimates, the difference in Macc between the LMC and our Galaxy appears to be about an order of magnitude. We review the main mechanisms of disk dispersal and find indications that typically higher Macc are to be expected in low-metallicity environments. However, many issues of this scenario need to be clarified by future observations and modeling. We also find that, in the mass range 1-2 M_sun, the Macc of PMS stars in the LMC increases with stellar mass as dot{M}accproptoM^b, with b approx1, i.e. slower than the second power low found for galactic PMS stars in the same mass regime.
We present Goulds Belt (GB) Spitzer IRAC and MIPS observations of the Lupus V and VI clouds and discuss them in combination with near-infrared (2MASS) data. Our observations complement those obtained for other Lupus clouds within the frame of the Spi tzer Core to Disk (c2d) Legacy Survey. We found 43 Young Stellar Object (YSO) candidates in Lupus V and 45 in Lupus VI, including 2 transition disks, using the standard c2d/GB selection method. None of these sources was classified as a pre-main sequence star from previous optical, near-IR and X-ray surveys. A large majority of these YSO candidates appear to be surrounded by thin disks (Class III; ~79% in Lupus V and ~87% in Lupus VI). These Class III abundances differ significantly from those observed for the other Lupus clouds and c2d/GB surveyed star-forming regions, where objects with optically thick disks (Class II) dominate the young population. We investigate various scenarios that can explain this discrepancy. In particular, we show that disk photo-evaporation due to nearby OB stars is not responsible for the high fraction of Class III objects. The gas surface densities measured for Lupus V and VI lies below the star-formation threshold (AV {eqsim}8.6 mag), while this is not the case for other Lupus clouds. Thus, few Myrs older age for the YSOs in Lupus V and VI with respect to other Lupus clouds is the most likely explanation of the high fraction of Class III objects in these clouds, while a higher characteristic stellar mass might be a contributing factor. Better constraints on the age and binary fraction of
We use near-infrared data obtained with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope to identify objects having the colors of brown dwarfs (BDs) in the field of the massive galactic cluster NGC 3603. These are identified through use o f a combination of narrow and medium band filters spanning the J and H bands, and which are particularly sensitive to the presence of the 1.3-1.5{mu}m H2O molecular band - unique to BDs. We provide a calibration of the relationship between effective temperature and color for both field stars and for BDs. This photometric method provides effective temperatures for BDs to an accuracy of {pm}350K relative to spectroscopic techniques. This accuracy is shown to be not significantly affected by either stellar surface gravity or uncertainties in the interstellar extinction. We identify nine objects having effective temperature between 1700 and 2200 K, typical of BDs, observed J-band magnitudes in the range 19.5-21.5, and that are strongly clustered towards the luminous core of NGC 3603. However, if these are located at the distance of the cluster, they are far too luminous to be normal BDs. We argue that it is unlikely that these objects are either artifacts of our dataset, normal field BDs/M-type giants or extra-galactic contaminants and, therefore, might represent a new class of stars having the effective temperatures of BDs but with luminosities of more massive stars. We explore the interesting scenario in which these objects would be normal stars that have recently tidally ingested a Hot Jupiter, the remnants of which are providing a short-lived extended photosphere to the central star. In this case, we would expect them to show the signature of fast rotation.
We present a deep optical/near-infrared imaging survey of the Serpens molecular cloud. This survey constitutes the complementary optical data to the Spitzer Core To Disk (c2d) Legacy survey in this cloud. The survey was conducted using the Wide Field Camera at the Isaac Newton Telescope. About 0.96 square degrees were imaged in the R and Z filters, covering the entire region where most of the young stellar objects identified by the c2d survey are located. 26524 point-like sources were detected in both R and Z bands down to R=24.5 mag and Z=23 mag with a signal-to-noise ratio better than 3. The 95% completeness limit of our catalog corresponds to 0.04 solar masses for members of the Serpens star forming region (age 2 Myr and distance 260 pc) in the absence of extinction. Adopting the typical extinction of the observed area (Av=7 mag), we estimate a 95% completeness level down to 0.1 solar masses. The astrometric accuracy of our catalog is 0.4 arcsec with respect to the 2MASS catalog. Our final catalog contains J2000 celestial coordinates, magnitudes in the R and Z bands calibrated to the SDSS photometric system and, where possible, JHK magnitudes from 2MASS for sources in 0.96 square degrees in the direction of Serpens. This data product has been already used within the frame of the c2d Spitzer Legacy Project analysis in Serpens to study the star/disk formation and evolution in this cloud; here we use it to obtain new indications of the disk-less population in Serpens.
81 - A. Frasca , E. Covino , L. Spezzi 2009
We performed an intensive photometric monitoring of the PMS stars falling in a field of about 10x10 arc-minutes in the vicinity of the Orion Nebula Cluster (ONC). Photometric data were collected between November 2006 and January 2007 with the REM tel escope in the VRIJHK bands. The largest number of observations is in the I band (about 2700 images) and in J and H bands (about 500 images in each filter). From the observed rotational modulation, induced by the presence of surface inhomogeneities, we derived the rotation periods for 16 stars and improved previous determinations for the other 13. The analysis of the spectral energy distributions and, for some stars, of high-resolution spectra provided us with the main stellar parameters (luminosity, effective temperature, mass, age, and vsini). We also report the serendipitous detection of two strong flares in two of these objects. In most cases, the light-curve amplitudes decrease progressively from the R to H band as expected for cool starspots, while in a few cases, they can only be modelled by the presence of hot spots, presumably ascribable to magnetospheric accretion. The application of our own spot model to the simultaneous light curves in different bands allowed us to deduce the spot parameters and particularly to disentangle the spot temperature and size effects on the observed light curves.
54 - L. Spezzi , I. Pagano , G. Marino 2009
We report the outcome of a deep multi-wavelength study of the IC2391 young open cluster. We aim at uncovering new low-mass and sub-stellar members of the cluster and identifying new debris disk objects. A 30*30 square arcmin area in IC 2391 was obser ved using the wide-field imager at the ESO 2.2m telescope. The completeness limits of the photometry at 3 sigma level are V=24.7, Rc=23.7 and Ic=23.0, faint enough to reveal sub-stellar members down to about 0.03 solar masses. Our membership criteria are based on the use of our optical data, in combination with JHKs magnitudes from the 2MASS catalog. We also estimate the physical parameters of the selected candidates. Debris disk candidates are identified on the basis of their infrared excess emission using near- and mid-infrared photometry from the Spitzer Space Telescope. Our optical survey, which has a limiting magnitude at 3 sigma level 1-2 mag fainter than previous optical surveys conducted in IC2391, revealed 29 new low-mass member candidates of the cluster. We estimate the contamination to be at least 50%. We constrain the fraction of sub-stellar objects in the range 8-15% and discuss possible explanations for the deficit of brown dwarfs in this cluster. We also identified 10 candidates in the cluster showing IR excess emission consistent with the presence of debris disks.
We discuss the results of the optical spectroscopic follow-up of pre-main sequence (PMS) objects and candidates selected in the Chamaeleon II dark cloud based on data from the Spitzer Legacy survey From Molecular Cores to Planet Forming Disks (c2d) a nd from previous surveys. Our sample includes both objects with infrared excess selected according to c2d criteria and referred to as Young Stellar Objects and other cloud members and candidates selected from complementary optical and near-infrared data. We characterize the sample of objects by deriving their physical parameters. The vast majority of objects have masses < 1 solar mass and ages < 6 Myr. Several of the PMS objects and candidates lie very close to or below the Hydrogen-burning limit. A first estimate of the slope of the Initial Mass Function in Cha II is consistent with that of other T associations. The star formation efficiency in the cloud (1-4%) is consistent with our own estimates for Taurus and Lupus, but significantly lower than for Cha I. This might mean that different star-formation activities in the Chamaeleon clouds may reflect a different history of star formation. We also find that the Cha II cloud is turning some 8 solar masses into stars every Myr, which is less than the star formation rate in the other c2d clouds. However, the star formation rate is not steady and evidence is found that the star formation in Cha II might have occurred very rapidly. The H_alpha emission of the Cha II PMS objects, as well as possible correlations between their stellar and disk properties, are also investigated.
We discuss the results from the combined IRAC and MIPS c2d Spitzer Legacy survey observations and complementary optical and near infrared data of the Chamaeleon II (Cha II) dark cloud. We perform a census of the young population of Cha II, in a mappe d area of ~1.75 square degrees, and study the spatial distribution and properties of the cloud members and candidate pre-main sequence (PMS) objects and their circumstellar matter. From the analysis of the volume density of the PMS objects and candidates we find two tight groups of objects with volume densities higher than 25 solar masses per cubic parsec and 5-10 members each. These groups correlate well in space with the regions of high extinction. A multiplicity fraction of about 13% is observed for objects with separations between 0.8 and 6.0. Using the results of masses and ages from a companion paper, we estimate the star formation efficiency to be 1-4% significantly lower than for Cha I. This might mean that different star-formation activities in the Chamaeleon clouds reflect a different history of star formation. We also find that the Cha II cloud is turning some 6-7 solar masses into stars every Myr, which is low in comparison with the star formation rate in other c2d clouds. On the other hand, the disk fraction of 70-80% that we estimate in Cha II is much higher than in other star forming regions and indicates that the population in this cloud is dominated by objects with active accretion. Finally, the Cha II outflows are discussed, with particular regard to the discovery of a new Herbig-Haro outflow, HH 939, driven by the classical T Tauri star Sz 50.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا