ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds.X. The Chamaeleon II Pre-Main Sequence Population as Observed With IRAC and MIPS

138   0   0.0 ( 0 )
 نشر من قبل Loredana Spezzi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the results from the combined IRAC and MIPS c2d Spitzer Legacy survey observations and complementary optical and near infrared data of the Chamaeleon II (Cha II) dark cloud. We perform a census of the young population of Cha II, in a mapped area of ~1.75 square degrees, and study the spatial distribution and properties of the cloud members and candidate pre-main sequence (PMS) objects and their circumstellar matter. From the analysis of the volume density of the PMS objects and candidates we find two tight groups of objects with volume densities higher than 25 solar masses per cubic parsec and 5-10 members each. These groups correlate well in space with the regions of high extinction. A multiplicity fraction of about 13% is observed for objects with separations between 0.8 and 6.0. Using the results of masses and ages from a companion paper, we estimate the star formation efficiency to be 1-4% significantly lower than for Cha I. This might mean that different star-formation activities in the Chamaeleon clouds reflect a different history of star formation. We also find that the Cha II cloud is turning some 6-7 solar masses into stars every Myr, which is low in comparison with the star formation rate in other c2d clouds. On the other hand, the disk fraction of 70-80% that we estimate in Cha II is much higher than in other star forming regions and indicates that the population in this cloud is dominated by objects with active accretion. Finally, the Cha II outflows are discussed, with particular regard to the discovery of a new Herbig-Haro outflow, HH 939, driven by the classical T Tauri star Sz 50.

قيم البحث

اقرأ أيضاً

We present maps of over 1.5 square degrees in Chamaeleon (Cha) II at 24, 70, and 160 micron observed with the Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS) and a 1.2 square degree millimeter map from SIMBA on the Swedish-ESO Submillimetre Telescope (SEST). The c2d Spitzer Legacy Teams data reduction pipeline is described in detail. Over 1500 24 micron sources and 41 70 micron sources were detected by MIPS with fluxes greater than 10-sigma. More than 40 potential YSOs are identified with a MIPS and 2MASS color-color diagram and by their spectral indices, including two previously unknown sources with 24 micron excesses. Our new SIMBA millimeter map of Cha II shows that only a small fraction of the gas is in compact structures with high column densities. The extended emission seen by MIPS is compared with previous CO observations. Some selected interesting sources, including two detected at 1 mm, associated with Cha II are discussed in detail and their SEDs presented. The classification of these sources using MIPS data is found to be consistent with previous studies.
We present IRAC (3.6, 4.5, 5.8, and 8.0 micron) observations of the Chamaeleon II molecular cloud. The observed area covers about 1 square degree defined by $A_V >2$. Analysis of the data in the 2005 c2d catalogs reveals a small number of sources (40 ) with properties similar to those of young stellaror substellar objects (YSOs). The surface density of these YSO candidates is low, and contamination by background galaxies appears to be substantial, especially for sources classified as Class I or flat SED. We discuss this problem in some detail and conclude that very few of the candidate YSOs in early evolutionary stages are actually in the Cha II cloud. Using a refined set of criteria, we define a smaller, but more reliable, set of 24 YSO candidates.
The Spitzer Space Telescope mapped the Perseus molecular cloud complex with IRAC and MIPS as part of the c2d Spitzer Legacy project. This paper combines the observations from both instruments giving an overview of low-mass star formation across Perse us from 3.6 to 70 micron. We provide an updated list of young stellar objects with new classifications and source fluxes from previous works, identifying 369 YSOs in Perseus with the Spitzer dataset. By synthesizing the IRAC and MIPS maps of Perseus and building on the work of previous papers in this series (Jorgensen et al. 2006, Rebull et al. 2007), we present a current census of star formation across the cloud and within smaller regions. 67% of the YSOs are associated with the young clusters NGC 1333 and IC 348. The majority of the star formation activity in Perseus occurs in the regions around the clusters, to the eastern and western ends of the cloud complex. The middle of the cloud is nearly empty of YSOs despite containing regions of high visual extinction. The western half of Perseus contains three-quarters of the total number of embedded YSOs (Class 0+I and Flat SED sources) in the cloud and nearly as many embedded YSOs as Class II and III sources. Class II and III greatly outnumber Class 0+I objects in eastern Perseus and IC 348. These results are consistent with previous age estimates for the clusters. Across the cloud, 56% of YSOs and 91% of the Class 0+I and Flat sources are in areas where Av > 5 mag, indicating a possible extinction threshold for star formation.
We discuss the results from the combined IRAC and MIPS c2d Spitzer Legacy observations of the Serpens star-forming region. In particular we present a set of criteria for isolating bona fide young stellar objects, YSOs, from the extensive background c ontamination by extra-galactic objects. We then discuss the properties of the resulting high confidence set of YSOs. We find 235 such objects in the 0.85 deg^2 field that was covered with both IRAC and MIPS. An additional set of 51 lower confidence YSOs outside this area is identified from the MIPS data combined with 2MASS photometry. We describe two sets of results, color-color diagrams to compare our observed source properties with those of theoretical models for star/disk/envelope systems and our own modeling of the subset of our objects that appear to be star+disks. These objects exhibit a very wide range of disk properties, from many that can be fit with actively accreting disks to some with both passive disks and even possibly debris disks. We find that the luminosity function of YSOs in Serpens extends down to at least a few x .001 Lsun or lower for an assumed distance of 260 pc. The lower limit may be set by our inability to distinguish YSOs from extra-galactic sources more than by the lack of YSOs at very low luminosities. A spatial clustering analysis shows that the nominally less-evolved YSOs are more highly clustered than the later stages and that the background extra-galactic population can be fit by the same two-point correlation function as seen in other extra-galactic studies. We also present a table of matches between several previous infrared and X-ray studies of the Serpens YSO population and our Spitzer data set.
We present maps of 7.78 square degrees of the Lupus molecular cloud complex at 24, 70, and $160:mu$m. They were made with the Spitzer Space Telescopes Multiband Imaging Photometer for Spitzer (MIPS) instrument as part of the Spitzer Legacy Program, ` `From Molecular Cores to Planet-Forming Disks (c2d). The maps cover three separate regions in Lupus, denoted I, III, and IV. We discuss the c2d pipeline and how our data processing differs from it. We compare source counts in the three regions with two other data sets and predicted star counts from the Wainscoat model. This comparison shows the contribution from background galaxies in Lupus I. We also create two color magnitude diagrams using the 2MASS and MIPS data. From these results, we can identify background galaxies and distinguish them from probable young stellar objects. The sources in our catalogs are classified based on their spectral energy distribution (SED) from 2MASS and Spitzer wavelengths to create a sample of young stellar object candidates. From 2MASS data, we create extinction maps for each region and note a strong corresponence between the extinction and the $160:mu$m emission. The masses we derived in each Lupus cloud from our extinction maps are compared to masses estimated from $^{13}$CO and C$^{18}$O and found to be similar to our extinction masses in some regions, but significantly different in others. Finally, based on our color-magnitude diagrams, we selected 12 of our reddest candidate young stellar objects for individual discussion. Five of the 12 appear to be newly-discovered YSOs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا