ترغب بنشر مسار تعليمي؟ اضغط هنا

The effects of local electronic interactions and finite temperatures upon the transmission across the Cu$_4$CoCu$_4$ metallic heterostructure are studied in a combined density functional and dynamical mean field theory. It is shown that, as the elect ronic correlations are taken into account via a local but dynamic self-energy, the total transmission at the Fermi level gets reduced (predominantly in the minority spin channel), whereby the spin polarization of the transmission increases. The latter is due to a more significant $d$-electrons contribution, as compared to the non-correlated case in which the transport is dominated by $s$ and $p$ electrons.
The results of the electronic structure calculations performed on SmN by using the LDA+U method with and without including the spin-orbit coupling are presented. Within the LDA+U approach, a N(2$p$) band polarization of $simeq 0.3 mu_B$ is induced by Sm(4$f$)-N(2$p$) hybridization, and a half-metallic ground state is obtained. By including spin-orbit coupling the magnetic structure was shown to be antiferromagnetic of type II, with Sm spin and orbital moments nearly cancelling. This results into a semiconducting ground state, which is in agreement with experimental results.
We compute the Compton profile of Ni using the Local Density Approximation of Density Functional Theory supplemented with electronic correlations treated at different levels. The total/magnetic Compton profiles show not only quantitative but also qua litative significant differences depending weather Hubbard corrections are treated at a mean field +U or in a more sophisticated dynamic way. Our aim is to discuss the range and capability of electronic correlations to modify the kinetic energy along specific spatial directions. The second and the fourth order moments of the difference in the Compton profiles are discussed as a function of the strength of local Coulomb interaction $U$.
We present a study of the electronic and magnetic properties of the multiple-decker sandwich nanowires ($CP-M$) composed of cyclopentadienyl (CP) rings and 3d transition metal atoms (M=Ti to Ni) using first-principles techniques. We demonstrate using Density Functional Theory that structural relaxation play an important role in determining the magnetic ground-state of the system. Notably, the computed magnetic moment is zero in $CP-Mn$, while in $CP-V$ a significant turn-up in magnetic moment is evidenced. Two compounds show a half-metallic ferromagnetic ground state $CP-Fe/Cr$ with a gap within minority/majority spin channel. In order to study the effect of electronic correlations upon the half-metallic ground states in $CP-Cr$, we introduce a simplified three-bands Hubbard model which is solved within the Variational Cluster Approach. We discuss the results as a function of size of the reference cluster and the strength of average Coulomb $U$ and exchange $J$ parameters. Our results demonstrate that for the range of studied parameters $U=2-4eV$ and $J=0.6-1.2eV$ the half-metallic character is not maintained in the presence of local Coulomb interactions.
We present results of a combined density functional and many-body calculations for the electronic and magnetic properties of the defect-free digital ferromagnetic heterostructures obtained by doping GaAs with Cr and Mn. While local density approximat ion/(+U) predicts half-metallicity in these defect-free delta-doped heterostructures, we demonstrate that local many-body correlations captured by Dynamical Mean Field Theory induce within the minority spin channel non-quasiparticle states just above $E_F$. As a consequence of the existence of these many-body states the half-metallic gap is closed and the carriers spin polarization is significantly reduced. Below the Fermi level the minority spin highest valence states are found to localize more on the GaAs layers being independent of the type of electronic correlations considered. Thus, our results confirm the confinement of carriers in these delta-doped heterostructures, having a spin-polarization that follow a different temperature dependence than magnetization. We suggest that polarized hot-electron photoluminescence experiments might bring evidence for the existence of many-body states within the minority spin channel and their finite temperature behavior.
We investigate half-metallicity in [001] stacked (CrAs)$_n$/(GaAs)$_n$ heterostructures with $n leq 3$ by means of a combined many-body and electronic structure calculation. Interface states in the presence of strong electronic correlations are discu ssed for the case $n=1$. For $n=2,3$ our results indicate that the minority spin half-metallic gap is suppressed by local correlations at finite temperatures, and continuously shrinks upon increasing the heterostructure period. Although around room temperature the magnetization of the heterostructure deviates by only $2%$ from the ideal integer value, finite temperature polarization at $E_F$ is reduced by at least $25%$. Below the Fermi level the minority spin highest valence states are found to localize more on the GaAs layers while lowest conduction states have a many-body origin. Our results, therefore, suggest that in these heterostructures holes and electrons remain separated among different layers.
We analyse the effects of doping Holmium impurities into the full-Heusler ferromagnetic alloy Co$_2$MnSi. Experimental results, as well as theoretical calculations within Density Functional Theory in the Local Density Approximation plus Hubbard U fra mework show that the holmium moment is aligned antiparallely to that of the transition metal atoms. According to the electronic structure calculations, substituting Ho on Co sites introduces a finite density of states in the minority spin gap, while substitution on the Mn sites preserves the half-metallic character.
The density of non-quasiparticle states in the ferrimagnetic full-Heuslers Mn$_2$VAl alloy is calculated from first principles upon appropriate inclusion of correlations. In contrast to most half-metallic compounds, this material displays an energy g ap in the majority-spin spectrum. For this situation, non-quasiparticle states are located below the Fermi level, and should be detectable by spin-polarized photoemission. This opens a new way to study many-body effects in spintronic-related materials.
We investigate the effects of electronic correlations in the full-Heusler Co$_2$MnSi, by combining a theoretical analysis of the spin-resolved density of states with tunneling-conductance spectroscopy measurements using Co$_2$MnSi as electrode. Both experimental and theoretical results confirm the existence of so-called non-quasiparticle states and their crucial contribution to the finite-temperature spin polarisation in this material.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا