ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we study unitary Gaussian processes with independent increments with which the unitary equivalence to a Hudson-Parthasarathy evolution systems is proved. This gives a generalization of results in [16] and [17] in the absence of the stationarity condition.
This is a continuation of the earlier work cite{SSS} to characterize stationary unitary increment Gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with a technical assumption on the domain of the gen erator, unitary equivalence of the processes to the solution of Hudson-Parthasarathy equation is proved.
The aim of this article is to characterize unitary increment process by a quantum stochastic integral representation on symmetric Fock space. Under certain assumptions we have proved its unitary equivalence to a Hudson-Parthasarathy flow.
Given a conditionally completely positive map $mathcal L$ on a unital $ast$-algebra $A$, we find an interesting connection between the second Hochschild cohomology of $A$ with coefficients in the bimodule $E_{mathcal L}=B^a(A oplus M)$ of adjointable maps, where $M$ is the GNS bimodule of $mathcal L$, and the possibility of constructing a quantum random walk (in the sense of cite{AP,LP,L,KBS}) corresponding to $mathcal L$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا