ترغب بنشر مسار تعليمي؟ اضغط هنا

Large liquid-scintillator-based detectors have proven to be exceptionally effective for low energy neutrino measurements due to their good energy resolution and scalability to large volumes. The addition of directional information using Cherenkov lig ht and fast timing would enhance the scientific reach of these detectors, especially for searches for neutrino-less double-beta decay. In this paper, we develop a technique for extracting particle direction using the difference in arrival times for Cherenkov and scintillation light, and evaluate several detector advances in timing, photodetector spectral response, and scintillator emission spectra that could be used to make direction reconstruction a reality in a kiloton-scale detector.
124 - C. Aberle , J.J. Li , S. Weiss 2013
Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrino less double beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.
165 - Lindley Winslow 2013
Liquid-scintillator-based detectors are a robust technology that scales well to large volumes. For this reason, they are attractive for experiments searching for neutrinoless double-beta decay. A combination of improved photo-detection technology and novel liquid scintillators may allow for the extraction of particle direction in addition to the total energy of the particle. Such an advance would find applications beyond searches for neutrinoless double-beta decay.
101 - Lindley Winslow 2013
The last decade has been the decade of nanotechnology, a length scale which is of particular interest since it is here that we see the transition from the classical to the quantum world. In this transition to the quantum regime new phenomena appear t hat have proven valuable in a wide range of applications. This whitepaper focusses on the simplest nanotechnology, the spherical nanoparticles and their possible application to particle physics.
Liquid scintillator detectors are widely used in modern neutrino studies. The unique optical properties of semiconducting nanocrystals, known as quantum dots, offer intriguing possibilities for improving standard liquid scintillator, especially when combined with new photodetection technology. Quantum dots also provide a means to dope scintillator with candidate isotopes for neutrinoless double beta decay searches. In this work, the first studies of the scintillation properties of quantum-dot-doped liquid scintillator using both UV light and radioactive sources are presented.
143 - L. Winslow 2011
From the discovery of the neutrino to the precision neutrino oscillation measurements in KamLAND, nuclear reactors have proven to be an important source of antineutrinos. As their power and our knowledge of neutrino physics has increased, more sensit ive measurements have become possible. The next generation of reactor antineutrino experiments require more detailed simulations of the reactor core. Many of the reactor simulation codes are proprietary which makes detailed studies difficult. Here we present the results of the open source DRAGON code and compare it to other industry standards for reactor modeling. We use published data from the Takahama reactor to determine the quality of the simulations. The propagation of the uncertainty to the antineutrino flux is also discussed.
Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulations to predict reactor fission rates. Here we present results from the DRAGON and MURE simulation codes and compare the m to other industry standards for reactor core modeling. We use published data from the Takahama-3 reactor to evaluate the quality of these simulations against the independently measured fuel isotopic composition. The propagation of the uncertainty in the reactor operating parameters to the resulting antineutrino flux predictions is also discussed.
122 - J. Lopez , K. Terao , J.M. Conrad 2011
This paper describes a novel directional neutron detector prototype. The low pressure time projection chamber uses a mix of helium and CF4 gases. The detector reconstructs the energy and angular distribution of fast neutron recoils. This paper report s results of energy calibration using an alpha source and angular reconstruction studies using a collimated neutron source. The best performance is obtained with a 12.5% CF4 gas mixture. At low energies the target for fast neutrons transitions is primarily helium, while at higher energies, the fluorine contributes as a target. The reconstruction efficiency is both energy and target dependent. For neutrons with energies less than 20 MeV, the reconstruction efficiency is ~40% for fluorine recoils and ~60% for helium recoils.
We report a measurement of the neutrino-electron elastic scattering rate from 8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5 MeV analysis threshold is 1.49+/-0.14(stat)+/-0. 17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a 8B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77+/-0.26(stat)+/-0.32(syst) x 10^6 cm^-2s^-1. The analysis threshold is driven by 208Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic 11Be. The measured rate is consistent with existing measurements and with Standard Solar Model predictions which include matter enhanced neutrino oscillation.
A Multi Megawatt Cyclotron complex able to accelerate H2+ to 800 MeV/amu is under study. It consists of an injector cyclotron able to accelerate the injected beam up to 50 MeV/n and of a booster ring made of 8 magnetic sectors and 8 RF cavities. The magnetic field and the forces on the superconducting coils are evaluated using the 3-D code OPERA. The injection and extraction trajectories are evaluated using the well tested codes developed by the MSU group in the 80s. The advantages to accelerate H2+ are described and preliminary evaluations on the feasibility and expected problems to build the injector cyclotron and the ring booster are here presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا