ترغب بنشر مسار تعليمي؟ اضغط هنا

66 - Lex E. Renner 2009
The Poincare polynomial of a Weyl group calculates the Betti numbers of the projective homogeneous space $G/B$, while the $h$-vector of a simple polytope calculates the Betti numbers of the corresponding rationally smooth toric variety. There is a co mmon generalization of these two extremes called the $H$-polynomial. It applies to projective, homogeneous spaces, toric varieties and, much more generally, to any algebraic variety $X$ where there is a connected, solvable, algebraic group acting with a finite number of orbits. We illustrate this situation by describing the $H$-polynomials of certain projective $Gtimes G$-varieties $X$, where $G$ is a semisimple group and $B$ is a Borel subgroup of $G$. This description is made possible by finding an appropriate cellular decomposition for $X$ and then describing the cells combinatorially in terms of the underlying monoid of $Btimes B$-orbits. The most familiar example here is the wonderful compactification of a semisimple group of adjoint type.
Let M be an irreducible normal algebraic monoid with unit group G. It is known that G admits a Rosenlicht decomposition, G=G_antG_aff, where G_ant is the maximal anti-affine subgroup of G, and G_aff the maximal normal connected affine subgroup of G. In this paper we show that this decomposition extends to a decomposition M=G_antM_aff, where M_aff is the affine submonoid M_aff=bar{G_aff}. We then use this decomposition to calculate $mathcal{O}(M)$ in terms of $mathcal{O}(M_aff)$ and G_aff, G_antsubset G. In particular, we determine when M is an anti-affine monoid, that is when $mathcal{O}(M)=K$.
157 - Lex E. Renner 2008
Let $(W,S)$ be a finite Weyl group and let $win W$. It is widely appreciated that the descent set D(w)={sin S | l(ws)<l(w)} determines a very large and important chapter in the study of Coxeter groups. In this paper we generalize some of those result s to the situation of the Bruhat poset $W^J$ where $Jsubseteq S$. Our main results here include the identification of a certain subset $S^Jsubseteq W^J$ that convincingly plays the role of $Ssubseteq W$, at least from the point of view of descent sets and related geometry. The point here is to use this resulting {em descent system} $(W^J,S^J)$ to explicitly encode some of the geometry and combinatorics that is intrinsic to the poset $W^J$. In particular, we arrive at the notion of an {em augmented poset}, and we identify the {em combinatorially smooth} subsets $Jsubseteq S$ that have special geometric significance in terms of a certain corresponding torus embedding $X(J)$. The theory of $mathscr{J}$-irreducible monoids provides an essential tool in arriving at our main results.
149 - Lex E. Renner 2008
Let $ksubseteq K$ be a finite Galois extension of fields with Galois group $G$. Let $mathscr{G}$ be the automorphism $k$-group scheme of $K$. We construct a canonical $k$-subgroup scheme $underline{G}subsetmathscr{G}$ with the property that $Spec_k(K )$ is a $k$-torsor for $underline{G}$. $underline{G}$ is a constant $k$-group if and only if $G$ is abelian, in which case $G=underline{G}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا