ترغب بنشر مسار تعليمي؟ اضغط هنا

65 - Laurent Loinard 2014
Very Long Baseline Interferometry (VLBI) at radio wavelengths can provide astrometry accurate to 10 micro-arcseconds or better (i.e. better than the target GAIA accuracy) without being limited by dust obscuration. This means that unlike GAIA, VLBI ca n be applied to star-forming regions independently of their internal and line-of-sight extinction. Low-mass young stellar objects (particularly T Tauri stars) are often non-thermal compact radio emitters, ideal for astrometric VLBI radio continuum experiments. Existing observations for nearby regions (e.g. Taurus, Ophiuchus, or Orion) demonstrate that VLBI astrometry of such active T Tauri stars enables the reconstruction of both the regions 3D structure (through parallax measurements) and their internal kinematics (through proper motions, combined with radial velocities). The extraordinary sensitivity of the SKA telescope will enable similar tomographic mappings to be extended to regions located several kpc from Earth, in particular to nearby spiral arm segments. This will have important implications for Galactic science, galactic dynamics and spiral structure theories.
83 - Laurent Loinard 2014
The determination of accurate distances to star-forming regions are discussed in the broader historical context of astronomical distance measurements. We summarize recent results for regions within 1 kpc and present perspectives for the near and more distance future.
151 - Laurent Loinard 2012
We present ALMA and VLA observations of the molecular and ionized gas at 0.1-0.3 arcsec resolution in the Class 0 protostellar system IRAS 16293-2422. These data clarify the origins of the protostellar outflows from the deeply embedded sources in thi s complex region. Source A2 is confirmed to be at the origin of the well known large scale north-east--south-west flow. The most recent VLA observations reveal a new ejection from that protostar, demonstrating that it drives an episodic jet. The central compact part of the other known large scale flow in the system, oriented roughly east-west, is well delineated by the CO(6-5) emission imaged with ALMA and is confirmed to be driven from within component A. Finally, a one-sided blueshifted bubble-like outflow structure is detected here for the first time from source B to the north-west of the system. Its very short dynamical timescale (~ 200 yr), low velocity, and moderate collimation support the idea that source B is the youngest object in the system, and possibly one of the youngest protostars known.
79 - Laurent Loinard 2012
Very Long Baseline Interferometry (VLBI) observations can provide the position of compact radio sources with an accuracy of order 50 micro-arcseconds. This is sufficient to measure the trigonometric parallax and proper motions of any object within 50 0 pc of the Sun to better than a few percent. Because they are magnetically active, young stars are often associated with compact radio emission detectable using VLBI techniques. Here we will show how VLBI observations have already constrained the distance to the most often studied nearby regions of star-formation (Taurus, Ophiuchus, Orion, etc.) and have started to provide information on their internal structure and kinematics. We will then briefly describe a large project (called The Goulds Belt Distances Survey) designed to provide a detailed view of star-formation in the Solar neighborhood using VLBI observations.
(ABRIDGED) We present multi-epoch Very Long Baseline Array (VLBA) observations of V773 Tau A, the 51-day binary subsystem in the multiple young stellar system V773 Tau. Combined with previous interferometric and radial velocity measurements, these ne w data enable us to improve the characterization of the physical orbit of the A subsystem. In particular, we infer updated dynamical masses for the primary and the secondary components of 1.55 pm 0.11 Msun, and 1.293 pm 0.068 Msun, respectively, and an updated orbital parallax distance to the system of 135.7 pm 3.2 pc, all consistent with previous estimates. Using the improved orbit, we can calculate the absolute coordinates of the barycenter of V773 Tau A at each epoch of our VLBA observations, and fit for its trigonometric parallax and proper motion. This provides a direct measurement of the distance to the system almost entirely independent of the orbit modeling. The best fit yields a distance of 129.9 pm 3.2 pc, in good agreement (i.e. within 1 sigma) with the distance estimate based on the orbital fit. Taking the mean value of the orbital and trigonometric parallaxes, we conclude that V773 Tau is located at d =132.8 pm 2.3 pc. The accuracy of this determination is nearly one order of magnitude better than that of previous estimates. In projection, V773 Tau and two other young stars (Hubble 4 and HDE 283572) recently observed with the VLBA are located toward the dark cloud Lynds 1495, in the central region of Taurus. These three stars appear to have similar trigonometric parallaxes, radial velocities, and proper motions, and we argue that the weighted mean and dispersion of their distances (d = 131.4 pc and sigma_d = 2.4 pc) provide a good estimate of the distance to and depth of Lynds 1495 and its associated stellar population.
165 - Gisela Ortiz-Leon 2011
The radio emission from the well-studied massive stellar system Cyg OB2 #5 is known to fluctuate with a period of 6.7 years between a low-flux state when the emission is entirely of free-free origin, and a high-flux state when an additional non-therm al component (of hitherto unknown nature) appears. In this paper, we demonstrate that the radio flux of that non-thermal component is steady on timescales of hours, and that its morphology is arc-like. This shows that the non-thermal emission results from the collision between the strong wind driven by the known contact binary in the system, and that of an unseen companion on a somewhat eccentric orbit with a 6.7-yr period and a 5 to 10 mas semi-major axis. Together with the previously reported wind-collision region located about 0.8 arcsec to the north-east of the contact binary, Cyg OB2 #5 appears to be the only multiple system known so far to harbor two radio-imaged wind-collision regions.
168 - S. Dzib 2011
Using the Very Long Baseline Array (VLBA), we have observed the radio continuum emission from the young stellar object HW 9 in the Cepheus A star-forming region at ten epochs between 2007 February and 2009 November. Due to its strong radio variabilit y, the source was detected at only four of the ten epochs. From these observations, the trigonometric parallax of HW 9 was determined to be $pi$ = 1.43 $pm$ 0.07 mas, in excellent agreement with a recent independent VLBA determination of the trigonometric parallax of a methanol maser associated with the nearby young stellar source HW 2 ($pi$ = 1.43 $pm$ 0.08 mas). This concordance in results, obtained in one case from continuum and in the other from line observations, confirms the reliability of Very Long Baseline Array trigonometric parallax measurements. By combining the two results, we constrain the distance to Cepheus A to be 700$_{-28}^{+31}$ pc, an uncertainty of 3.5%.
98 - L. Loinard 2011
Very Long Baseline Interferometry (VLBI) observations can provide the position of compact radio sources with an accuracy of order 50 micro-arcseconds. This is sufficient to measure the trigonometric parallax and proper motions of any object within 50 0 pc of the Sun to better than a few percent. Because they are magnetically active, young stars are often associated with compact radio emission detectable using VLBI techniques. Here we will show how VLBI observations have already constrained the distance to the most often studied nearby regions of star-formation (Taurus, Ophiuchus, Orion, etc.) and have started to provide information on their internal structure and kinematics. We will then briefly describe a large project (called The Goulds Belt Distance Survey) designed to provide a detailed view of star-formation in the Solar neighborhood using VLBI observations.
66 - Laurent Loinard 2010
We have used the greatly enhanced spectral capabilities of the Expanded Very Large Array to observe both the 22.3 GHz continuum emission and the H66{alpha} recombination line toward the well-studied Galactic emission-line star MWC 349A. The continuum flux density is found to be 411 $pm$ 41 mJy in good agreement with previous determinations. The H66{alpha} line peak intensity is about 25 mJy, and the average line-to-continuum flux ratio is about 5%, as expected for local thermodynamic equilibrium conditions. This shows that the H66{alpha} recombination line is not strongly masing as had previously been suggested, although a moderate maser contribution could be present. The He66{alpha} recombination line is also detected in our observations; the relative strengths of the two recombination lines yield an ionized helium to ionized hydrogen abundance ratio y+ = 0.12 $pm$ 0.02. The ionized helium appears to share the kinematics of the thermally excited ionized hydrogen gas, so the two species are likely to be well mixed. The electron temperature of the ionized gas in MWC 349A deduced from our observations is 6,300 $pm$ 600 K.
Cyg OB2 #5 is a contact binary system with variable radio continuum emission. This emission has a low-flux state where it is dominated by thermal emission from the ionized stellar wind and a high-flux state where an additional non-thermal component a ppears. The variations are now known to have a period of 6.7 +/- 0.2 yr. The non-thermal component has been attributed to different agents: an expanding envelope ejected periodically from the binary, emission from a wind-collision region, or a star with non-thermal emission in an eccentric orbit around the binary. The determination of the angular size of the non-thermal component is crucial to discriminate between these alternatives. We present the analysis of VLA archive observations made at 8.46 GHz in 1994 (low state) and 1996 (high state), that allow us to subtract the effect of the persistent thermal emission and to estimate an angular size of 0.02 arcseconds for the non-thermal component. This compact size favors the explanation in terms of a star with non-thermal emission or of a wind-collision region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا