ترغب بنشر مسار تعليمي؟ اضغط هنا

The non-thermal, time-variable radio emission from Cyg OB2 # 5: A wind-collision region

238   0   0.0 ( 0 )
 نشر من قبل Laurent Loinard
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Gisela Ortiz-Leon




اسأل ChatGPT حول البحث

The radio emission from the well-studied massive stellar system Cyg OB2 #5 is known to fluctuate with a period of 6.7 years between a low-flux state when the emission is entirely of free-free origin, and a high-flux state when an additional non-thermal component (of hitherto unknown nature) appears. In this paper, we demonstrate that the radio flux of that non-thermal component is steady on timescales of hours, and that its morphology is arc-like. This shows that the non-thermal emission results from the collision between the strong wind driven by the known contact binary in the system, and that of an unseen companion on a somewhat eccentric orbit with a 6.7-yr period and a 5 to 10 mas semi-major axis. Together with the previously reported wind-collision region located about 0.8 arcsec to the north-east of the contact binary, Cyg OB2 #5 appears to be the only multiple system known so far to harbor two radio-imaged wind-collision regions.



قيم البحث

اقرأ أيضاً

110 - Luis F. Rodriguez 2010
Cyg OB2 #5 is a contact binary system with variable radio continuum emission. This emission has a low-flux state where it is dominated by thermal emission from the ionized stellar wind and a high-flux state where an additional non-thermal component a ppears. The variations are now known to have a period of 6.7 +/- 0.2 yr. The non-thermal component has been attributed to different agents: an expanding envelope ejected periodically from the binary, emission from a wind-collision region, or a star with non-thermal emission in an eccentric orbit around the binary. The determination of the angular size of the non-thermal component is crucial to discriminate between these alternatives. We present the analysis of VLA archive observations made at 8.46 GHz in 1994 (low state) and 1996 (high state), that allow us to subtract the effect of the persistent thermal emission and to estimate an angular size of 0.02 arcseconds for the non-thermal component. This compact size favors the explanation in terms of a star with non-thermal emission or of a wind-collision region.
We present multi--epoch VLBA observations of the compact wind collision region in the Cyg OB2 #5 system. These observation confirm the arc-shaped morphology of the emission reported earlier. The total flux as a function of time is roughly constant wh en the source is on, but falls below the detection limit as the wind collision region approaches periastron in its orbit around the contact binary at the center of the system. In addition, at one of the on epochs, the flux drops to about a fifth of its average value. We suggest that this apparent variation could result from the inhomogeneity of the wind that hides part of the flux rather than from an intrinsic variation. We measured a trigonometrical parallax, for the most compact radio emission of 0.61 $pm$ 0.22 mas, corresponding to a distance of 1.65 $^{+0.96}_{-0.44}$ kpc, in agreement with recent trigonometrical parallaxes measured for objects in the Cygnus X complex. Using constraints on the total mass of the system and orbital parameters previously reported in the literature, we obtain two independent indirect measurements of the distance to the Cyg OB2 #5 system, both consistent with 1.3--1.4 kpc. Finally, we suggest that the companion star responsible for the wind interaction, yet undetected, is of spectral type between B0.5 to O8.
In this contribution we model the non-thermal emission (from radio to gamma-rays) produced in the compact (and recently detected) colliding wind region in the multiple stellar system Cyg OB2 #5. We focus our study on the detectability of the produced gamma-rays.
Some OB stars show variable non-thermal radio emission. The non-thermal emission is due to synchrotron radiation that is emitted by electrons accelerated to high energies. The electron acceleration occurs at strong shocks created by the collision of radiatively-driven stellar winds in binary systems. Here we present results of our modelling of two colliding wind systems: Cyg OB2 No. 8A and Cyg OB2 No. 9.
We study the non-thermal radio emission of the binary Cyg OB2 No. 8A, to see if it is variable and if that variability is locked to the orbital phase. We investigate if the synchrotron emission generated in the colliding-wind region of this binary ca n explain the observations and we verify that our proposed model is compatible with the X-ray data. We use both new and archive radio data from the Very Large Array (VLA) to construct a light curve as a function of orbital phase. We also present new X-ray data that allow us to improve the X-ray light curve. We develop a numerical model for the colliding-wind region and the synchrotron emission it generates. The model also includes free-free absorption and emission due to the stellar winds of both stars. In this way we construct artificial radio light curves and compare them with the observed one. The observed radio fluxes show phase-locked variability. Our model can explain this variability because the synchrotron emitting region is not completely hidden by the free-free absorption. In order to obtain a better agreement for the phases of minimum and maximum flux we need to use stellar wind parameters for the binary components which are somewhat different from typical values for single stars. We verify that the change in stellar parameters does not influence the interpretation of the X-ray light curve. Our model has trouble explaining the observed radio spectral index. This could indicate the presence of clumping or porosity in the stellar wind, which - through its influence on both the Razin effect and the free-free absorption - can considerably influence the spectral index. Non-thermal radio emitters could therefore open a valuable pathway to investigate the difficult issue of clumping in stellar winds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا