ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the int ernal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of 1.85 (+0.52,-0.42) M_Jupiter, which implies that it is a planet, not a brown dwarf.
Convection is the mechanism by which energy is transported through the outermost 30% of the Sun. Solar turbulent convection is notoriously difficult to model across the entire convection zone where the density spans many orders of magnitude. In this issue of PNAS, Hanasoge et al. (2012) employ recent helioseismic observations to derive stringent empirical constraints on the amplitude of large-scale convective velocities in the solar interior. They report an upper limit that is far smaller than predicted by a popular hydrodynamic numerical simulation.
Various methods of helioseismology are used to study the subsurface properties of the sunspot in NOAA Active Region 9787. This sunspot was chosen because it is axisymmetric, shows little evolution during 20-28 January 2002, and was observed continuou sly by the MDI/SOHO instrument. (...) Wave travel times and mode frequencies are affected by the sunspot. In most cases, wave packets that propagate through the sunspot have reduced travel times. At short travel distances, however, the sign of the travel-time shifts appears to depend sensitively on how the data are processed and, in particular, on filtering in frequency-wavenumber space. We carry out two linear
82 - L. Gizon , M.J. Thompson 2010
Time-distance helioseismology and related techniques show great promise for probing the structure and dynamics of the subphotospheric layers of the Sun. Indeed time-distance helioseismology has already been applied to make inferences about structures and flows under sunspots and active regions, to map long-lived convective flow patterns, and so on. Yet certainly there are still many inadequacies in the current approaches and, as the data get better and the questions we seek to address get more subtle, methods that were previously regarded as adequate are no longer acceptable. Here we give a short and partial description of outstanding problems in local helioseismology, using time-distance helioseismology as a guiding example.
In this paper we describe the semi-spectral linear MHD (SLiM) code which we have written to follow the interaction of linear waves through an inhomogeneous three-dimensional solar atmosphere. The background model allows almost arbitrary perturbations of density, temperature, sound speed as well as magnetic and velocity fields. We give details of several of the tests we have used to check the code. The code will be useful in understanding the helioseismic signatures of various solar features, including sunspots.
131 - J. Woch , L. Gizon 2010
Solar Orbiter is intended to become ESAs next solar mission in heritage of the successful SOHO project. The scientific objectives of the mission, its design, and its scientific payload are reviewed. Specific emphasis is given to the perspectives of Solar Orbiter with respect to helioseismology.
336 - A.C. Birch , L. Gizon 2010
Time-distance helioseismology is a technique for measuring the time for waves to travel from one point on the solar surface to another. These wave travel times are affected by advection by subsurface flows. Inferences of plasma flows based on observe d travel times depend critically on the ability to accurately model the effects of subsurface flows on time-distance measurements. We present a Born approximation based computation of the sensitivity of time distance travel times to weak, steady, inhomogeneous subsurface flows. Three sensitivity functions are obtained, one for each component of the 3D vector flow. We show that the depth sensitivity of travel times to horizontally uniform flows is given approximately by the kinetic energy density of the oscillation modes which contribute to the travel times. For flows with strong depth dependence, the Born approximation can give substantially different results than the ray approximation.
The Sun supports a rich spectrum of internal waves that are continuously excited by turbulent convection. The GONG network and the MDI/SOHO space instrument provide an exceptional data base of spatially-resolved observations of solar oscillations, co vering an entire sunspot cycle (11 years). Local helioseismology is a set of tools for probing the solar interior in three dimensions using measurements of wave travel times and local mode frequencies. Local helioseismology has discovered (i) near-surface vector flows associated with convection (ii) 250 m/s subsurface horizontal outflows around sunspots (iii) ~50 m/s extended horizontal flows around active regions (converging near the surface and diverging below), (iv) the effect of the Coriolis force on convective flows and active region flows (v) the subsurface signature of the 15 m/s poleward meridional flow, (vi) a +/-5 m/s time-varying depth-dependent component of the meridional circulation around the mean latitude of activity, and (vii) magnetic activity on the far side of the Sun.
167 - L. Gizon 2008
Solar oscillations consist of a rich spectrum of internal acoustic waves and surface gravity waves, stochastically excited by turbulent convection. They have been monitored almost continuously over the last ten years with high-precision Doppler image s of the solar surface. The purpose of helioseismology is to retrieve information about the structure and the dynamics of the solar interior from the frequencies, phases, and amplitudes of solar waves. Methods of analysis are being developed to make three-dimensional images of subsurface motions and temperature inhomogeneities in order to study convective structures and regions of magnetic activity, like sunspots.
65 - L. Gizon , L. , S. M. Hanasoge 2008
With the aim of studying magnetic effects in time-distance helioseismology, we use the first-order Born approximation to compute the scattering of acoustic plane waves by a magnetic cylinder embedded in a uniform medium. We show, by comparison with t he exact solution, that the travel-time shifts computed in the Born approximation are everywhere valid to first order in the ratio of the magnetic to the gas pressures. We also show that, for arbitrary magnetic field strength, the Born approximation is not valid in the limit where the radius of the magnetic cylinder tends to zero.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا