ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new results from our search for z~7 galaxies from deep spectroscopic observations of candidate z-dropouts in the CANDELS fields. Despite the extremely low flux limits achieved by our sensitive observations, only 2 galaxies have robust reds hift identifications, one from its Lyalpha emission line at z=6.65, the other from its Lyman-break, i.e. the continuum discontinuity at the Lyalpha wavelength consistent with a redshift 6.42, but with no emission line. In addition, for 23 galaxies we present deep limits in the Lyalpha EW derived from the non detections in ultra-deep observations. Using this new data as well as previous samples, we assemble a total of 68 candidate z~7 galaxies with deep spectroscopic observations, of which 12 have a line detection. With this much enlarged sample we can place solid constraints on the declining fraction of Ly$alpha$ emission in z~7 Lyman break galaxies compared to z~6, both for bright and faint galaxies. Applying a simple analytical model, we show that the present data favor a patchy reionization process rather than a smooth one.
Determining the AGN content in structures of different mass/velocity dispersion and comparing them to higher mass/lower redshift analogs is important to understand how the AGN formation process is related to environmental properties. We use our well- tested cluster finding algorithm to identify structures in the GOODS North and South fields, exploiting the available spectroscopic redshifts and accurate photometric redshifts. We identify 9 structures in GOODS-south (presented in a previous paper) and 8 new structures in GOODS-north. We only consider structures where at least 2/3 of the members brighter than M_R=-20 have a spectroscopic redshift. For those group members that coincide with X-ray sources in the 4 and 2 Msec Chandra source catalogs respectively, we determine if the X-ray emission originates from AGN activity or it is related to the galaxies star-formation activity. We find that the fraction of AGN with Log L_H > 42 erg/s in galaxies with M_R < -20 is on average 6.3+-1.3%, much higher than in lower redshift groups of similar mass and more than double the fraction found in massive clusters at a similarly high redshift. We then explore the spatial distribution of AGN in the structures and find that they preferentially populate the outer regions. The colors of AGN host galaxies in structures tend to be confined to the green valley, thus avoiding the blue cloud and, partially, also the red-sequence, contrary to what happens in the field. We finally compare our results to the predictions of two sets of semi analytic models to investigate the evolution of AGN and evaluate potential triggering and fueling mechanisms. The outcome of this comparison attests the importance of galaxy encounters, not necessarily leading to mergers, as an efficient AGN triggering mechanism. (abridged)
We present the final results from our ultra-deep spectroscopic campaign with FORS2 at the ESO/VLT for the confirmation of z~7 z--band dropout candidates selected from our VLT/Hawk-I imaging survey over three independent fields. In particular we repor t on two newly discovered galaxies at redshift ~6.7 in the NTT deep field: both galaxies show a Ly-alpha emission line with rest-frame EWs of the order 15-20 A and luminosities of 2-4 X 10^{42} erg/s. We also present the results of ultra-deep observations of a sample of i-dropout galaxies, from which we set a solid upper limit on the fraction of interlopers. Out of the 20 z-dropouts observed we confirm 5 galaxies at 6.7 < z < 7.1. This is systematically below the expectations drawn on the basis of lower redshift observations: in particular there is a significant lack of objects with intermediate Ly-alpha EWs (between 20 and 55 A). We conclude that the trend for the fraction of Ly-alpha emission in LBGs that is constantly increasing from z~3 to z~6 is most probably reversed from z~6 to z~7. Explaining the observed rapid change in the LAE fraction among the drop-out population with reionization requires a fast evolution of the neutral fraction of hydrogen in the Universe. Assuming that the Universe is completely ionized at z=6 and adopting the semi-analytical models of Dijkstra et al. (2011), we find that our data require a change of the neutral hydrogen fraction of the order Delta chi_{HI} ~ 0.6 in a time Delta z ~ 1, provided that the escape fraction does not increase dramatically over the same redshift interval.
We investigate the physical and morphological properties of LBGs at z ~2.5 to ~3.5, to determine if and how they depend on the nature and strength of the Lyalpha emission. We selected U-dropout galaxies from the z-detected GOODS MUSIC catalog, by ada pting the classical Lyman Break criteria on the GOODS filter set. We kept only those galaxies with spectroscopic confirmation, mainly from VIMOS and FORS public observations. Using the full multi-wavelength 14-bands photometry, we determined the physical properties of the galaxies, through a standard spectral energy distribution fitting with the updated Charlot & Bruzual (2009) templates. We also added other relevant observations, i.e. the 24mu m observations from Spitzer/MIPS and the 2 MSec Chandra X-ray observations. Finally, using non parametric diagnostics (Gini, Concentration, Asymmetry, M_20 and ellipticity), we characterized the rest-frame UV morphology of the galaxies. We then analyzed how these physical and morphological properties correlate with the presence of the Lyalpha line in the optical spectra. We find that, unlike at higher redshift, the dependence of physical properties on the Lyalpha line is milder: galaxies without Lyalpha in emission tend to be more massive and dustier than the rest of the sample, but all other parameters, ages, SFRs, X-ray emission as well as UV morphology do not depend strongly on the presence of the line emission. A simple scenario where all LBGs have intrinsically high Lyalpha emission, but where dust and neutral hydrogen content (which shape the final appearance of the Lyalpha) depend on the mass of the galaxies, is able to reproduce the majority of the observed properties at z~3. Some modification might be needed to account for the observed evolution of these properties with cosmic epoch, which is also discussed.
A significant fraction of high redshift starburst galaxies presents strong Ly alpha emission. Understanding the nature of these galaxies is important to assess the role they played in the early Universe and to shed light on the relation between the n arrow band selected Lyalpha emitters and the Lyman break galaxies: are the Lyalpha emitters a subset of the general LBG population? or do they represent the youngest galaxies in their early phases of formation? We studied a sample of UV continuum selected galaxies from z~2.5 to z~6 (U, B, V and i-dropouts) from the GOODS-South survey, that have been observed spectroscopically. Using the GOODS-MUSIC catalog we investigated their physical properties, such as total masses, ages, SFRs, extinction etc as determined from a spectrophotometric fit to the multi-wavelength (U band to mid-IR) SEDs, and their dependence on the emission line characteristics. In particular we determined the nature of the LBGs with Lyalpha in emission and compared them to the properties of narrow band selected Lyalpha emitters. For U and B-dropouts we also compared the properties of LBGs with and without the Lyalpha emission line.
We have analyzed a sample of LBGs from z =3.5 to z=6 selected from the GOODS-S field as B,V and i-dropouts, and with spectroscopic observations showing that they have the Lyalpha line in emission. Our main aim is to investigate their physical propert ies and their dependence on the emission line characteristics, to shed light on the relation between galaxies with Lyalpha emission and the general LBG population.The objects were selected from their continuum colors and then spectroscopically confirmed by the GOODS collaboration and other campaigns. From the spectra we derived the line flux and EW. We then used U-band to mid-IR photometry from GOODS-MUSIC to derive the physical properties of the galaxies, such as total stellar mass, age and so on, through standard SED fitting techniques.Although most galaxies are fit by young stellar populations, a small but non negligible fraction has SEDs that require considerably older stellar component, up to 1 Gyr. There is no apparent relation between age and EW: some of the oldest galaxies have large EW, and should be also selected in narrow band surveys. Therefore not all Lyalpha emitters are primeval galaxies in the very early stages of formation,as is commonly assumed. We also find a large range of stellar populations, with masses from 5x10^8 Msol to 5x10^10 Msol and SFR from few to 60 Msol/yr. Although there is no correlation between mass and EW, we find a significant lack of massive galaxies with high EW, which could be explained if the most massive galaxies were more dusty and/or contained more neutral gas than less massive objects. Finally we find that more than half of the galaxies contain small but non negligible amounts of dust: the mean E(B-V) and the EW are well correlated, although with a large scatter, as already found at lower redshift
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا